The structural differences among different G-quadruplexes provide an opportunity for site-specific targeting of a particular G-quadruplex structure. However, majority of G-quadruplex ligands described thus far show little selectivity among different G-quadruplexes. In this work, we delineate the design and synthesis of a crescent-shaped thiazole peptide that preferentially stabilizes c-MYC quadruplex over other promoter G-quadruplexes and inhibits c-MYC oncogene expression. Biophysical analysis such as Förster resonance energy transfer (FRET) melting and fluorescence spectroscopy show that the thiazole peptide TH3 can selectively interact with the c-MYC G-quadruplex over other investigated G-quadruplexes and duplex DNA. NMR spectroscopy reveals that peptide TH3 binds to the terminal G-quartets and capping regions present in the 5′- and 3′-ends of c-MYC G-quadruplex with a 2:1 stoichiometry; whereas structurally related distamycin A is reported to interact with quadruplex structures via groove binding and end stacking modes with 4:1 stoichiometry. Importantly, qRT-PCR, western blot and dual luciferase reporter assay show that TH3 downregulates c-MYC expression by stabilizing the c-MYC G-quadruplex in cancer cells. Moreover, TH3 localizes within the nucleus of cancer cells and exhibits antiproliferative activities by inducing S phase cell cycle arrest and apoptosis.
Two novel binaphthyl amines have been designed and synthesized using Buchwald amination and oxidative homocoupling as key steps. The binaphthyl amine containing two triazole rings shows higher affinity for c-MYC G-quadruplex, exhibits fluorescence "turn-on" response with c-MYC, and stains the nucleus in cells. The triazolyl binaphthyl amine shows cytotoxicity for cancer cells by inducing G2/M phase cell cycle arrest and apoptosis. Moreover, both ligands can downregulate c-MYC expression at transcriptional and translational levels.
Herein, a prolinamide‐derived peptidomimetic that preferentially binds to c‐MYC and BCL2 G‐quadruplexes present in the promoter regions of apoptosis‐related genes (c‐MYC and BCL2) over other DNA quadruplexes are described. Biological assays, such as real‐time quantitative reverse transcription, western blot, dual luciferase, and small interfering RNA knockdown assays, indicate that the ligand triggers a synthetic lethal interaction by simultaneously inhibiting the expression of c‐MYC and BCL2 genes through their promoter G‐quadruplexes. The ligand shows antiproliferative activity in MCF‐7 cells that overexpress both MYC and BCL2 genes, in comparison to cells that overexpress either of the two. Moreover, the ligand induces S‐phase cell‐cycle arrest, DNA damage, and apoptosis in MCF‐7 cells.
Herein, we report a carbazole (Cz) ligand that displays distinct turn-on fluorescence signals upon interaction with human telomeric G-quadruplex ( h-TELO) and nuclease enzymes. Interestingly, Cz selectively binds and stabilizes the mixed hybrid topology of h-TELO G-quadruplex that withstands digestion by exonucleases and nuclease S1. The distinct fluorescence signatures of Cz-stabilized h-TELO with nucleases are used to design conceptually novel DNA devices for selectively detecting the enzymatic activity of DNase I as well as performing logic operations. An INHIBIT logic gate is constructed using h-TELO and DNase I as the inputs while the inputs of h-TELO and nuclease S1 form a YES logic gate. Furthermore, a two-input two-output reusable logic device with "multireset" function is developed by using h-TELO and DNase I as inputs. On the basis of this platform, combinatorial logic systems (INHIBIT-INHIBIT and NOR-OR) have been successfully installed using different combinations of nucleases as inputs. Moreover, this new strategy of using a synthetic dual emissive probe and enzyme/DNA inputs for constructing reusable logic device may find important applications in biological computing and information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.