The DedA protein family is a highly conserved and ancient family of membrane proteins with representatives in most sequenced genomes, including those of bacteria, archaea, and eukarya. The functions of the DedA family proteins remain obscure. However, recent genetic approaches have revealed important roles for certain bacterial DedA family members in membrane homeostasis. Bacterial DedA family mutants display such intriguing phenotypes as cell division defects, temperature sensitivity, altered membrane lipid composition, elevated envelope-related stress responses, and loss of proton motive force. The DedA family is also essential in at least two species of bacteria: Borrelia burgdorferi and Escherichia coli. Here, we describe the phylogenetic distribution of the family and summarize recent progress toward understanding the functions of the DedA membrane protein family.
We have reported that simultaneous deletion of two Escherichia coli genes, yqjA and yghB, encoding related and conserved inner membrane proteins belonging to the DedA protein family results in a number of intriguing phenotypes, including temperature sensitivity at 42°C, altered membrane lipid composition, and cell division defects. We sought to characterize these and other phenotypes in an effort to establish a function for this protein family in E. coli. Here, using reporter assays, we show that the major envelope stress response pathways Cpx, Psp, Bae, and Rcs are activated in strain BC202 (W3110; ⌬yqjA ⌬yghB) at the permissive growth temperature of 30°C. We previously demonstrated that 10 mM Mg 2؉ , 400 mM NaCl, and overexpression of tatABC are capable of restoring normal growth to BC202 at elevated growth temperatures. Deletion of the cpxR gene from BC202 results in the loss of the ability of these supplements to restore growth at 42°C. Additionally, we report that the membrane potential of BC202 is significantly reduced and that cell division and growth can be restored either by expression of the multidrug transporter MdfA from a multicopy plasmid or by growth at pH 6.0. Together, these results suggest that the DedA family proteins YqjA and YghB are required for general envelope maintenance and homeostasis of the proton motive force under a variety of growth conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.