Summary
This research work presents a thermoelectric energy harvesting system comprises of a double input DC‐DC converter with maximum power point tracking (MPPT) technique under varying temperature conditions (VTCs). The converter has two inputs with N stages of diode‐capacitor to boost the output voltage. It has the advantages of higher voltage gain and flexibility of power‐sharing by both the independent sources. The perturb and observe (P&O)‐based MPPT algorithm is an efficient and simple method to track the maximum power. However, the power‐current (P‐I) characteristics of the thermoelectric modules exhibit multiple peaks at VTCs; it fails to identify the global peak point (GPP) and gets track the local peak point. To overcome the drawback of the P&O technique, a particle swarm optimization (PSO)‐based MPPT technique is implemented to track the GPP. A comparison is performed between the P&O and PSO technique in terms of MPPT tracking efficiency and oscillation around the maximum power point. From the acquired results of simulation and experiment, it is recommended that the PSO‐based MPPT technique has furnished better overall performance.
Summary
This research work investigates the power‐current (P‐I) and voltage‐current (V‐I) characteristics of the thermoelectric modules (TEMs) in series‐parallel configurations under homogeneous and heterogeneous temperature difference (ΔT) condition. To study its performance, 5 different series‐parallel combinations were formed using 16 TEMs. The comparisons among the different configurations have been done to determine the optimal series‐parallel configuration. The total load power extracted from 16 individually connected TEMs was 18.2 W, which was placed as a reference load power. The optimal series‐parallel combination for maximizing the load power is square series‐parallel configuration, whose maximum load power is 95.5%, compared to the reference load power. Moreover, in square series‐parallel configuration, the total internal resistance value that remains constant is equal to the internal resistance of a single TEM, and the total open‐circuit voltage increases gradually on adding any number of TEMs. Thus, it produces higher load voltage and higher load current simultaneously, which is recommended to power DC micro‐grid applications. Furthermore, the series, parallel, and square series‐parallel configurations are connected as star to obtain 3 separate DC output to power the same application. The performance of TEMs under various configurations is analyzed, and the obtain results are verified experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.