Evaluating the impact of different social networks on the spread of respiratory diseases has been limited by a lack of detailed data on transmission outside the household setting as well as appropriate statistical methods. Here, from data collected during a H1N1 pandemic (pdm) influenza outbreak that started in an elementary school and spread in a semirural community in Pennsylvania, we quantify how transmission of influenza is affected by social networks. We set up a transmission model for which parameters are estimated from the data via Markov chain Monte Carlo sampling. Sitting next to a case or being the playmate of a case did not significantly increase the risk of infection; but the structuring of the school into classes and grades strongly affected spread. There was evidence that boys were more likely to transmit influenza to other boys than to girls (and vice versa), which mimicked the observed assortative mixing among playmates. We also investigated the presence of abnormally high transmission occurring on specific days of the outbreak. Late closure of the school (i.e., when 27% of students already had symptoms) had no significant impact on spread. School-aged individuals (6-18 y) facilitated the introduction and spread of influenza in households, but only about one in five cases aged >18 y was infected by a school-aged household member. This analysis shows the extent to which clearly defined social networks affect influenza transmission, revealing strong between-place interactions with back-and-forth waves of transmission between the school, the community, and the household.here is a large body of theoretical literature on how social networks and population structures may affect the spread of communicable diseases and hence influence the design of optimal control strategies (1-8). Such work often makes use of detailed data on populations (e.g., demographics in households, schools, and workplaces; mobility and land-use data; contact surveys; or time-use data) but then makes assumptions about how transmission rates change with the type of interaction (e.g., as a function of the setting and the spatial or social distance between individuals, etc.).
The formulation of accurate clinical case definitions is an integral part of an effective process of public health surveillance. Although such definitions should, ideally, be based on a standardized and fixed collection of defining criteria, they often require revision to reflect new knowledge of the condition involved and improvements in diagnostic testing. Optimal case definitions also need to have a balance of sensitivity and specificity that reflects their intended use. After the 2009–2010 H1N1 influenza pandemic, the World Health Organization (WHO) initiated a technical consultation on global influenza surveillance. This prompted improvements in the sensitivity and specificity of the case definition for influenza – i.e. a respiratory disease that lacks uniquely defining symptomology. The revision process not only modified the definition of influenza-like illness, to include a simplified list of the criteria shown to be most predictive of influenza infection, but also clarified the language used for the definition, to enhance interpretability. To capture severe cases of influenza that required hospitalization, a new case definition was also developed for severe acute respiratory infection in all age groups. The new definitions have been found to capture more cases without compromising specificity. Despite the challenge still posed in the clinical separation of influenza from other respiratory infections, the global use of the new WHO case definitions should help determine global trends in the characteristics and transmission of influenza viruses and the associated disease burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.