The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the view of the World Bank, its Executive Directors, or the countries they represent. Policy Research Working Papers are available online at http://econ.worldbank.org.
Low-cost sensors (LCS) provide opportunities for neighborhood-level air pollution data collection, yet significant knowledge gaps remain regarding the accurate application and interpretation of LCS. In this study, we present an in-field calibration of a network of 20 low-cost ambient particulate matter sensors (LCS) in greater Kolkata, India, operating between October 2018-April 2019. In order to understand LCS performance in relation to local reference-grade PM2.5 monitors (RGMs), three of these LCS were co-located with RGMs operated by the West Bengal Pollution Control Board at Rabindra Bharati University (RBU), Victoria Memorial (VICTORIA), and Padmapukur (Howrah, PDM). Data from the co-locations were used to calibrate the LCS network using random forest regression and multiple linear regression approaches. Measured relative humidity and temperature were significant model features. Agreement between the LCS and RGM for 24-h averaged PM2.5 measurements was strongest at RBU, with an uncalibrated root mean squared error (RMSE) of 27.1 μg m-3, followed by PDM (32.6 μg m-3) and VICTORIA (50.7 μg m-3). Multiple linear regression was used to derive calibration models. Cross-calibration between co-located LCS-RGM pairs was tested. The LCS data after cross-calibration correctly identified days as being in or out of attainment with the 24h National Ambient Air Quality Standard of 60 μg m-3 91% of the time. The corrected data accurately identifies days with an India scale Air Quality Index of “poor” or worse 94% of the time. This suggests that LCS can be a useful supplement to RGM networks for air quality management.
Low-cost sensors (LCS) provide opportunities for neighborhood-level air pollution data collection, yet significant knowledge gaps remain regarding the accurate application and interpretation of LCS. In this study, we present an in-field calibration of a network of 20 low-cost ambient particulate matter sensors (LCS) in greater Kolkata, India, operating between October 2018-April 2019. In order to understand LCS performance in relation to local reference-grade PM2.5 monitors (RGMs), three of these LCS were co-located with RGMs operated by the West Bengal Pollution Control Board at Rabindra Bharati University (RBU), Victoria Memorial (VICTORIA), and Padmapukur (Howrah, PDM). Data from the co-locations were used to calibrate the LCS network using random forest regression and multiple linear regression approaches. Measured relative humidity and temperature were significant model features. Agreement between the LCS and RGM for 24-h averaged PM2.5 measurements was strongest at RBU, with an uncalibrated root mean squared error (RMSE) of 27.1 μg m-3, followed by PDM (32.6 μg m-3) and VICTORIA (50.7 μg m-3). Multiple linear regression was used to derive calibration models. Cross-calibration between co-located LCS-RGM pairs was tested. The LCS data after cross-calibration correctly identified days as being in or out of attainment with the 24h National Ambient Air Quality Standard of 60 μg m-3 91% of the time. The corrected data accurately identifies days with an India scale Air Quality Index of “poor” or worse 94% of the time. This suggests that LCS can be a useful supplement to RGM networks for air quality management. Diurnal trends and a high level of correlation across the hybrid LCS-RGM network suggest regional and secondary sources of PM2.5 are important in Kolkata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.