In the conserved autophagy pathway, autophagosomes (APs) engulf cellular components and deliver them to the lysosome for degradation. Before fusing with the lysosome, APs have to close via an unknown mechanism. We have previously shown that the endocytic Rab5-GTPase regulates AP closure. Therefore, we asked whether ESCRT, which catalyzes scission of vesicles into late endosomes, mediates the topologically similar process of AP sealing. Here, we show that depletion of representative subunits from all ESCRT complexes causes late autophagy defects and accumulation of APs. Focusing on two subunits, we show that Snf7 and the Vps4 ATPase localize to APs and their depletion results in accumulation of open APs. Moreover, Snf7 and Vps4 proteins complement their corresponding mutant defects in vivo and in vitro. Finally, a Rab5-controlled Atg17–Snf7 interaction is important for Snf7 localization to APs. Thus, we unravel a mechanism in which a Rab5-dependent Atg17–Snf7 interaction leads to recruitment of ESCRT to open APs where ESCRT catalyzes AP closure.
SummaryThe epithelial brush border Na/H exchanger NHE3 is active under basal conditions and functions as part of neutral NaCl absorption in the intestine and renal proximal tubule, where it accounts for the majority of total Na absorbed. NHE3 is highly regulated. Both stimulation and inhibition occur post-prandially. This digestion related regulation of NHE3 is mimicked by multiple extracellular agonists and intracellular second messengers. The regulation of NHE3 depends on its C-terminal cytoplasmic domain, which acts as a scaffold to bind multiple regulatory proteins and links NHE3 to the cytoskeleton. The cytoskeletal association occurs by both direct binding to ezrin and by indirect binding via ezrin binding to the C-terminus of the multi-PDZ domain containing proteins NHERF1 and NHERF2. This is a review of the domain structure of NHE3 and of the scaffolding function and role in the regulation of NHE3 of the NHE3 C-terminal domain.
The epithelial brush border (BB) Na+/H+ exchanger, NHE3, plays a major role in transcellular Na+ absorption in the renal proximal tubule. NHE3 activity is rapidly regulated by neurohumoral substances and growth factors via changes in its amount on the BB by a process partially involving vesicle trafficking. The PDZ domain-containing proteins, NHERF1/2, are scaffold proteins that link NHE3 to the actin cytoskeleton via their binding to both ezrin and NHE3. NHERF1/2 interact with both an internal C-terminal domain of NHE3 and the N-terminus of ezrin. We used fluorescence recovery after photobleaching (FRAP) to study the effect of NHERF1/2 on NHE3 mobility in the brush border of opossum kidney (OK) proximal tubule cells. A confocal microscope was used to allow the selective study of apical membrane versus intracellular NHE3. A chimera of NHE3-EGFP was transiently expressed in OK cells and its lateral diffusion in the apical membrane was measured with FRAP and confocal microscopy at 37°C. The contribution of intracellular NHE3-EGFP to recovery on the OK surface not directly over the juxtanuclear area (non-JN) was negligible as exposure to the water soluble crosslinker BS3 (10 mM) at 4°C resulted in no recovery of this component of surface NHE3-EGFP after photobleaching. The mobile fraction (Mf) of apical NHE3-EGFP was 47.5±2.2%; the effective diffusion coefficient (Deff) was (2.2±0.3) ×10–10 cm2/second. Overexpression of NHERF2 in OK cells decreased the Mf to 29.1±3.1% without changing Deff. In the truncation mutant, NHE3585-EGFP (aa 1-585), which lacks the NHERF1/2 binding domain, Mf increased to 66.4±2.2%, with no change in Deff, whereas NHE3660-EGFP, which binds NHERF1/2, had Mf (48.3±3.0%) and Deff both similar to full-length NHE3. These results are consistent with the PDZ domain proteins NHERF1 and NHERF2 scaffolding NHE3 in macromolecular complexes in the apical membrane of OK cells under basal conditions, which limits the lateral mobility of NHE3. It is probable that this is one of the mechanisms by which NHERF1/2 affects rapid regulation of NHE3 by growth factors and neurohumoral mediators. By contrast, disrupting the actin cytoskeleton by latrunculin B treatment (0.05 μM, 30 minutes) reduced the NHE3 Mf (21.9±4.5%) without altering the Deff. Therefore the actin cytoskeleton, independently of NHERF1/2 binding, is necessary for apical membrane mobility of NHE3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.