BACKGROUND-Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and nearly 90% of patients have at least one copy of the Phe508del CFTR mutation. In a phase 2 trial involving patients who were heterozygous for the Phe508del CFTR mutation and a minimal-function mutation (Phe508delminimal function genotype), the next-generation CFTR corrector elexacaftor, in combination with tezacaftor and ivacaftor, improved Phe508del CFTR function and clinical outcomes.METHODS-We conducted a phase 3, randomized, double-blind, placebo-controlled trial to confirm the efficacy and safety of elexacaftor-tezacaftor-ivacaftor in patients 12 years of age or older with cystic fibrosis with Phe508del-minimal function genotypes. Patients were randomly assigned to receive elexacaftor-tezacaftor-ivacaftor or placebo for 24 weeks. The primary end point was absolute change from baseline in percentage of predicted forced expiratory volume in 1 second (FEV 1 ) at week 4.
CF women continue to have a shortened life expectancy relative to men despite accounting for key CF-related comorbidities. Women also become colonized with certain common CF pathogens earlier than men and show a decreased life expectancy in the setting of respiratory infections. Explanations for this gender disparity are only beginning to be unraveled and further investigation into mechanisms is needed to help develop therapies that may narrow this gender gap.
Cilia are traditionally classified as motile or primary. Motile cilia are restricted to specific populations of well-differentiated epithelial cells, including those in the airway, brain ventricles, and oviducts. Primary cilia are nonmotile, solitary structures that are present in many cell types, and often have sensory functions such as in the retina and renal tubules. Primary cilia were also implicated in the regulation of fundamental processes in development. Rare depictions of primary cilia in embryonic airways led us to hypothesize that primary cilia in airway cells are temporally related to motile ciliogenesis. We identified primary cilia in undifferentiated, cultured airway epithelial cells from mice and humans and in developing lungs. The solitary cilia in the airways express proteins considered unique to primary cilia, including polycystin-1 and polycystin-2. A temporal analysis of airway epithelial cell differentiation showed that cells with primary cilia acquire markers of motile ciliogenesis, suggesting that motile ciliated cells originate from primary ciliated cells. Whereas motile ciliogenesis requires Foxj1, primary ciliogenesis does not, and the expression of Foxj1 was associated with a loss of primary cilia, just before the appearance of motile cilia. Primary cilia were not found in well-differentiated airway epithelial cells. However, after injury, they appear in the luminal layer of epithelium and in basal cells. The transient nature of primary cilia, together with the temporal and spatial patterns of expression in the development and repair of airway epithelium, suggests a critical role of primary cilia in determining outcomes during airway epithelial cell differentiation.
Endothelin-1 (ET-1) is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF), but the cellular mechanisms underlying the role it plays in this disease are not well characterized. Epithelialmesenchymal transition (EMT), which was recently demonstrated in alveolar epithelial cells (AEC), may play an important role in the pathogenesis of IPF and other forms of pulmonary fibrosis. Whether ET-1 contributes to the induction of EMT in AEC is unknown. The aims of this study were to evaluate AEC production of ET-1 and to determine if ET-1 induces EMT in AEC. We demonstrate that ET-1 is produced at physiologically relevant levels by primary AEC and is secreted preferentially toward the basolateral surface. We also demonstrate that AEC express high levels of endothelin type A receptors (ET-A) and, to a lesser extent, type B receptors (ET-B), suggesting autocrine or paracrine function for alveolar ET-1. In addition, ET-1 induces EMT through ET-A activation. Furthermore, TGF-1 synthesis is increased by ET-1, ET-1 induces Smad3 phosphorylation, and ET-1-induced EMT is attenuated by a TGF-1-neutralizing antibody. Thus, ET-1 is an important mediator of EMT in AEC, acting through ET-A-mediated TGF-1 production. These findings increase our basic understanding of the role of ET-1 in pulmonary fibrosis and suggest potential roles for AEC-derived ET-1 in the pathogenesis of other alveolar epithelial-mediated lung diseases.
There is growing epidemiologic data demonstrating sex differences with respect to prevalence and progression of airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and non-CF-related bronchiectasis. In asthma, for example, young boys have increased exacerbations and higher morbidity than girls which distinctly reverses after adolescence and into adulthood. In COPD, a disease that was historically considered an illness of men, the number of women dying per year is now greater than in men. Finally, women with CF-related bronchiectasis have a decreased median life expectancy relative to men and a higher risk of respiratory infections despite equal prevalence of the disease. A number of studies now exist demonstrating mechanisms behind these sex differences, including influences of genetic predisposition, sex hormones and comorbidities. The notable sex disparity has potential diagnostic, therapeutic and prognostic implications and for the practicing respiratory or general physician, a familiarity with these distinctions may augment effective management of patients with airway diseases. This review seeks to concisely summarize the data regarding gender-based differences in airway diseases, outline the current understanding of contributing factors and discuss therapeutic implications for clinicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.