Visual interactive system (VIS) has been received significant attention for solving various complex problems. However, designing and implementing a novel VIS with the large scale of data is a challenging task. While existing studies have applied various visual analytics (VA) to analyze and visualize insightful information, deep visual analytics (DVA) have considered as a promising technique to provide input evidences and explain system results. In this study, we present several deep learning (DL) techniques for analyzing data with visualization, which summarizes the state-of-the-art review on (i) big data analysis, (ii) cognitive and perception science, (iii) customer behavior analysis, (iv) natural language processing, (v) recommended system, (vi) healthcare analysis, (vii) fintech ecosystem, and (viii) tourism management. We present open research challenges for emerging DVA in the visualization community. We also highlight some key themes from the existing literature that may help to explore for future study. Thus, our goal is to help readers and researchers in DL and VA to understand key aspects in designing VIS for analysing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.