Transmission electron microscopy analysis of self-ordered porous alumina obtained by electrochemical anodization shows that self-ordering requires a porosity of 10%, independent of the specific anodization conditions. This corresponds to a volume expansion of alumina to aluminum of about 1.2. We propose that self-ordering of porous alumina with any interpore distance is possible if the applied potential, which mainly determines the interpore distance, and the pH value of the electrolyte, which mainly defines the pore radius, match the 10% porosity rule.
We have developed a simple technique for the fabrication of polymer nanotubes with a monodisperse size distribution and uniform orientation. When either a polymer melt or solution is placed on a substrate with high surface energy, it will spread to form a thin film, known as a precursor film, similar to the behavior of low molar mass liquids (1, 2). Similar wetting phenomena occur if porous templates are brought into contact with polymer solutions or melts: A thin surface film will cover the pore walls in the initial stages of wetting. This is because the cohesive driving forces for complete filling are much weaker than the adhesive forces. Wall wetting and complete filling of the pores thus take place on different time scales. The latter is prevented by thermal quenching in the case of melts or by solvent evaporation in the case of solutions, thus preserving a nanotube structure. If the template is of monodisperse size distribution, aligned or ordered, so are the nanotubes, and ordered polymer nanotube arrays can be obtained if the template is removed. Any melt-processible polymer, such as polytetrafluoroethylene (PTFE), blends, or multicomponent solutions can be formed into nanotubes with a wall thickness of a few tens of nanometers. Owing to its versatility, this approach should be a promising route toward functionalized polymer nanotubes. We used ordered porous alumina and oxidized macroporous silicon templates with narrow pore size distribution (3). Extended regular pore arrays were prepared by lithography. The pores are well-defined, straight, with a smooth inner surface and with diameters D P between 300 and 900 nm. To process melts, we placed the polymer on a pore array at a temperature well above its glass transition temperature, in
The magnetic behavior of 100 nm period arrays of Ni nanowires embedded in a highly ordered alumina pore matrix were characterized by magnetometry and magnetic force microscopy. Reducing the diameter of the nanowires from 55 to 30 nm while keeping the interwire distance constant leads to increasing coercive fields from 600 to 1200 Oe and to increasing remanence from 30% to 100%. The domain structure of the arrays exhibits in the demagnetized state a labyrith-like pattern. These results show that stray field interactions of single domain nanowires are entirely dependent on the nanowire diameter.
3D hierarchical heterostructure NiFe LDH@NiCoP/NF electrodes are prepared successfully on nickel foam with special interface engineering and synergistic effects. This research finds that the as-prepared NiFe LDH@NiCoP/NF electrodes have a more sophisticated inner structure and intensive interface than a simple physical mixture. The NiFe LDH@NiCoP/NF electrodes require an overpotential as low as 120 and 220 mV to deliver 10 mA cm −2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH, respectively. Tafel and electrochemical impedance spectroscopy further reveal a favorable kinetic during electrolysis. Specifically, the NiFe LDH@NiCoP/NF electrodes are simultaneously used as cathode and anode for overall water splitting, which requires a cell voltage of 1.57 V at 10 mA cm −2 . Furthermore, the synergistic effect of the heterostructure improves the structural stability and promotes the generation of active phases during HER and OER, resulting in excellent stability over 100 h of continuous operation. Moreover, the strategy and interface engineering of the introduced heterostructure can also be used to prepare other bifunctional and cost-efficient electrocatalysts for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.