Abstract-Operations with multiple autonomous underwater vehicles (AUVs) have a variety of underwater applications. For example, a coordinated group of vehicles with environmental sensors can perform adaptive ocean sampling at the appropriate spatial and temporal scales. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August, 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project.
Fish in a school efficiently find the densest source of food by individually responding not only to local environmental stimuli but also to the behavior of nearest neighbors.
The aim of this community white paper is to make recommendations for a glider component of a global ocean observing system. We first recommend the adoption of an Argo-like data system for gliders. Then, we argue that combining glider deployments with the other components (ships, moorings, floats and satellites) will considerably enhance our capacity for observing the ocean by filling gaps left by the other observing systems. Gliders could be deployed to sample most of the western and eastern boundary circulations and the regional seas (around 20 basins in the world) which are not well covered by the present global ocean observing system and in the vicinity of fixed point time series stations. These plans already involve people scattered around the world in Australia, Canada, Cyprus, France, Germany, Italy, Norway, Spain, UK, and the USA, and will certainly expand to many other countries. A rough estimate of resources required is about 13M$/Euro for ~20+ gliders permanently at sea during five years in the world ocean, based on present scientific infrastructures.
Abstract-Multi-AUV operations have much to offer a variety of underwater applications. With sensors to measure the environment and coordination that is appropriate to critical spatial and temporal scales, the group can perform important tasks such as adaptive ocean sampling. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project.
Abstract-Autonomous underwater vehicles, and in particular autonomous underwater gliders, represent a rapidly maturing technology with a large cost-saving potential over current ocean sampling technologies for sustained (month at a time) real-time measurements.In this paper we give an overview of the main building blocks of an underwater glider system for propulsion, control, communication and sensing. A typical glider operation, consisting of deployment, planning, monitoring and recovery will be described using the 2003 AOSN-II field experiment in Monterey Bay, California.We briefly describe recent developments at NRC-IOT, in particular the development of a laboratory-scale glider for dynamics and control research and the concept of a regional ocean observation system using underwater gliders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.