Background: Several epidemiological studies indicate that moderate consumption of red wine decreases both the incidence and mortality associated with cardiovascular disease. Quercetin and rutin (quercetin-3-rutinoside) are polyphenols present in relatively large concentrations in red wine and may play a role in this cardioprotective phenomenon. The precise mechanisms of cardioprotection remain unclear but may involve the action of these polyphenols as antioxidants, which attenuate the tissue injury that results from the production of proinflammatory oxidants such as hypochlorous acid (HOCl).Methods: To study the interaction of these polyphenols with proinflammatory oxidants, we mixed quercetin or rutin with HOCl (0 -150 M) and analyzed the reaction products by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance.Results: Stable mono-and dichlorinated derivates were detected for both quercetin and the glycoside derivative, rutin, which suggests that both the conjugated and unconjugated forms of quercetin reacted with HOCl similarly. Chlorination of quercetin occurred only at two sites, and the derivates (6-chloroquercetin, 6,8-dichloroquercetin) were more potent antioxidants toward oxidative modification of low-density lipoproteins and ABTS radical formation than the unmodified form.Conclusions: These data suggest that under certain pathological conditions in vivo (e.g., inflammation), flavonols may be converted to chlorinated derivates, which exhibit an enhanced antioxidant potential and thereby play a role in cardioprotection.
Several human studies suggest that light-to-moderate alcohol consumption is associated with enhanced insulin sensitivity, but these studies are not free of conflicting results. To determine if ethanolenhanced insulin sensitivity could be demonstrated in an animal model, male Wistar rats were fed a standard chow diet and received drinking water without (control) or with different ethanol concentrations (0.5, 1.5, 3, 4.5 and 7%, v/v) for 4 weeks ad libitum. Then, an intravenous insulin tolerance test (IVITT) was performed to determine insulin sensitivity. Among the ethanol groups, only the 3% ethanol group showed an increase in insulin sensitivity based on the increase of the plasma glucose disappearance rate in the IVITT (30%, P<0.05). In addition, an intravenous glucose tolerance test (IVGTT) was performed in control and 3% ethanol animals. Insulin sensitivity was confirmed in 3% ethanol rats based on the reduction of insulin secretion in the IVGTT (35%, P<0.05), despite the same glucose profile. Additionally, the 3% ethanol treatment did not impair body weight gain or plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the present study established that 3% ethanol in the drinking water for 4 weeks in normal rats is a model of increased insulin sensitivity, which can be used for further investigations of the mechanisms involved.
Background: Several epidemiological studies indicate that moderate consumption of red wine decreases both the incidence and mortality associated with cardiovascular disease. Quercetin and rutin (quercetin-3-rutinoside) are polyphenols present in relatively large concentrations in red wine and may play a role in this cardioprotective phenomenon. The precise mechanisms of cardioprotection remain unclear but may involve the action of these polyphenols as antioxidants, which attenuate the tissue injury that results from the production of proinflammatory oxidants such as hypochlorous acid (HOCl).Methods: To study the interaction of these polyphenols with proinflammatory oxidants, we mixed quercetin or rutin with HOCl (0 -150 M) and analyzed the reaction products by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance.Results: Stable mono-and dichlorinated derivates were detected for both quercetin and the glycoside derivative, rutin, which suggests that both the conjugated and unconjugated forms of quercetin reacted with HOCl similarly. Chlorination of quercetin occurred only at two sites, and the derivates (6-chloroquercetin, 6,8-dichloroquercetin) were more potent antioxidants toward oxidative modification of low-density lipoproteins and ABTS radical formation than the unmodified form.Conclusions: These data suggest that under certain pathological conditions in vivo (e.g., inflammation), flavonols may be converted to chlorinated derivates, which exhibit an enhanced antioxidant potential and thereby play a role in cardioprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.