In the 19th century, Oscar Wilde stated "We live, I regret to say, in an age of surfaces". Today, we do so even more, and we do not regret it: key advances in the understanding and fabrication of surfaces with controlled wetting properties are about to make the dream of a contamination-free (or 'no-clean') surface come true. Two routes to self-cleaning are emerging, which work by the removal of dirt by either film or droplet flow. Although a detailed understanding of the mechanisms underlying the behaviour of liquids on such surfaces is still a basic research topic, the first commercial products in the household-commodity sector and for applications in biotechnology are coming within reach of the marketplace. This progress report describes the current status of understanding of the underlying mechanisms, the concepts for making such surfaces, and some of their first applications.
In the course of miniaturization of electronic and microfluidic devices, reliable predictions of the stability of ultrathin films have a strategic role for design purposes. Consequently, efficient computational techniques that allow for a direct comparison with experiment become increasingly important. Here we demonstrate, for the first time, that the full complex spatial and temporal evolution of the rupture of ultrathin films can be modelled in quantitative agreement with experiment. We accomplish this by combining highly controlled experiments on different film-rupture patterns with computer simulations using novel numerical schemes for thin-film equations. For the quantitative comparison of the pattern evolution in both experiment and simulation we introduce a novel pattern analysis method based on Minkowski measures. Our results are fundamental for the development of efficient tools capable of describing essential aspects of thin-film flow in technical systems.
The accurate modeling of the dielectric properties of water is crucial for many applications in physics, computational chemistry, and molecular biology. This becomes possible in the framework of nonlocal electrostatics, for which we propose a novel formulation allowing for numerical solutions for the nontrivial molecular geometries arising in the applications mentioned before. Our approach is based on the introduction of a secondary field psi, which acts as the potential for the rotation free part of the dielectric displacement field D. For many relevant models, the dielectric function of the medium can be expressed as the Green's function of a local differential operator. In this case, the resulting coupled Poisson (-Boltzmann) equations for psi and the electrostatic potential phi reduce to a system of coupled partial differential equations. The approach is illustrated by its application to simple geometries.
Recent advances in the understanding of the melting behavior of double-stranded DNA with statistical mechanics methods lead to improved estimates of the weight factors for the dissociation events of the chains, in particular for interior loop melting. So far, in the modeling of DNA melting, the entropy of denaturated loops has been estimated from the number of configurations of a closed self-avoiding walk. It is well understood now that a loop embedded in a chain is characterized by a loop closure exponent c which is higher than that of an isolated loop. Here we report an analysis of DNA melting curves for sequences of a broad range of lengths (from 10 to 10 6 base pairs) calculated with a program based on the algorithms underlying MELTSIM. Using the embedded loop exponent we find that the cooperativity parameter is one order of magnitude bigger than current estimates. We argue that in the melting region the double helix persistence length is greatly reduced compared to its room temperature value, so that the use of the embedded loop closure exponent for real DNA sequences is justified.
New molecular modeling approaches, driven by rapidly improving computational platforms, have allowed many success stories for the use of computer-assisted drug design in the discovery of new mechanism-or structure-based drugs. In this overview, we highlight three aspects of the use of molecular docking. First, we discuss the combination of molecular and quantum mechanics to investigate an unusual enzymatic mechanism of a flavoprotein. Second, we present recent advances in anti-infectious agents’ synthesis driven by structural insights. At the end, we focus on larger biological complexes made by protein–protein interactions and discuss their relevance in drug design. This review provides information on how these large systems, even in the presence of the solvent, can be investigated with the outlook of drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.