X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 to 2500 nm. It is designed to maximize the sensitivity in this spectral range through dichroic splitting in three arms with optimized optics, coatings, dispersive elements and detectors. It operates at intermediate spectral resolution (R ∼ 4000−17 000, depending on wavelength and slit width) with fixed échelle spectral format (prism cross-dispersers) in the three arms. It includes a 1.8 × 4 integral field unit as an alternative to the 11 long slits. A dedicated data reduction package delivers fully calibrated two-dimensional and extracted spectra over the full wavelength range. We describe the main characteristics of the instrument and present its performance as measured during commissioning, science verification and the first months of science operations.
SINFONI is an adaptive optics assisted near-infrared integral field spectrometer for the ESO VLT. The Adaptive Optics Module (built by the ESO Adaptive Optics Group) is a 60-elements curvature-sensor based system, designed for operations with natural or sodium laser guide stars. The near-infrared integral field spectrometer SPIFFI (built by the Infrared Group of MPE) provides simultaneous spectroscopy of 32 x 32 spatial pixels, and a spectral resolving power of up to 3300. The adaptive optics module is in the phase of integration; the spectrometer is presently tested in the laboratory. We provide an overview of the project, with particular emphasis on the problems encountered in designing and building an adaptive optics assisted spectrometer. 1. SINFONI: ADAPTIVE OPTICS AND INTEGRAL FIELD SPECTROSCOPY SINFONI (SINgle Faint Object Near-IR Investigation) is an adaptive optics assisted near infrared integral field spectrometer mounted to the European Southern Observatory (ESO) VLT (Very Large Telescope). The instrument is a combination ofthe Adaptive Optics module [1], a clone ofMACAO (Multiple Application Curvature Adaptive Optics), developed and built by ESO, and of the near infrared integral field spectrograph SPIFFI (SPectrograph for Infrared Faint Field Imaging) [2], developed and built by the Max-Planck-Institute for extraterrestrial Physics (MPE).Currently, ESO offers two state-of-the-art near infrared instruments at the VLT: ISAAC [3] for seeing limited infrared imaging and spectroscopy, and NAOS/CONICA [4,5] for high order adaptive optics imaging and low-resolution spectroscopy. However, spectroscopy of faint objects with diffraction limited angular resolution at an eight-meter telescope will strongly benefit from a dedicated instrument, which combines the following characteristics: first, diffraction limited observations at near infrared wavelengths, optimized for faint wave-front reference stars and laser guide star operations; second, instantaneous spectroscopy of a two dimensional field with sufficiently high spectral resolution for deep observations between the night sky emission lines.Both partner institutes collected extensive experience with diffraction-limited spectroscopy with their instruments ADONIS/SHARP [6] at the La Silla 3.6 m telescope, and ALFA/3D [7] at the Calar Alto Observatory 3.5 m telescope. Our conclusion is that when observing with adaptive optics, integral field spectroscopy gains significantly over long-slit spectroscopy and Fabry-Perot imaging. The latter suffers significantly from the variation of the sky emission and the point-spread-function (PSF) between consecutive images, and consumes exorbitant observing time for large wavelength coverage. Long-slit spectroscopy, on the other hand, lacks the essential two-dimensional information for decomposing the spatial flux distribution, and loses most ofthe source flux for a diffraction limited slit width and moderate correction of the atmospheric aberrations. In addition, flexure within the instruments complicates the acquisition of...
No abstract
The European Southern Observatory (ESO) and the Max Planck Institut für extraterrestrische Physik (MPE) are jointly developing SINFONI, an Adaptive Optics (AO) assisted Near Infrared Integral Field Spectrometer, which will be installed in the first quarter of 2004 at the Cassegrain focus of YEPUN (VLT UT4). The Adaptive Optics Module, a clone of MACAO, designed and built by ESO, is based on a 60 elements curvature system. It feeds the 3D spectrograph, SPIFFI, designed and built by MPE, with higher than 50% K band Strehl for bright (V<12) on-axis Natural Guide Stars (NGS) and less than 35 mas/hour image motion. The AO-Module will be the first curvature AO system operated in Laser Guide Star (LGS) mode, using a STRAP system for the tip/tilt sensing. The Strehl performance in the LGS mode is expected to be better than 30% in K band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.