This study establishes a mechanism for metabolic hyperalgesia based on the glycolytic metabolite methylglyoxal. We found that concentrations of plasma methylglyoxal above 600 nM discriminate between diabetes-affected individuals with pain and those without pain. Methylglyoxal depolarizes sensory neurons and induces post-translational modifications of the voltage-gated sodium channel Na(v)1.8, which are associated with increased electrical excitability and facilitated firing of nociceptive neurons, whereas it promotes the slow inactivation of Na(v)1.7. In mice, treatment with methylglyoxal reduces nerve conduction velocity, facilitates neurosecretion of calcitonin gene-related peptide, increases cyclooxygenase-2 (COX-2) expression and evokes thermal and mechanical hyperalgesia. This hyperalgesia is reflected by increased blood flow in brain regions that are involved in pain processing. We also found similar changes in streptozotocin-induced and genetic mouse models of diabetes but not in Na(v)1.8 knockout (Scn10(-/-)) mice. Several strategies that include a methylglyoxal scavenger are effective in reducing methylglyoxal- and diabetes-induced hyperalgesia. This previously undescribed concept of metabolically driven hyperalgesia provides a new basis for the design of therapeutic interventions for painful diabetic neuropathy.
Dual activation of the glucagon-like peptide 1 (GLP-1) and glucagon receptor has the potential to lead to a novel therapy principle for the treatment of diabesity. Here, we report a series of novel peptides with dual activity on these receptors that were discovered by rational design. On the basis of sequence analysis and structure-based design, structural elements of glucagon were engineered into the selective GLP-1 receptor agonist exendin-4, resulting in hybrid peptides with potent dual GLP-1/glucagon receptor activity. Detailed structure-activity relationship data are shown. Further modifications with unnatural and modified amino acids resulted in novel metabolically stable peptides that demonstrated a significant dose-dependent decrease in blood glucose in chronic studies in diabetic db/db mice and reduced body weight in diet-induced obese (DIO) mice. Structural analysis by NMR spectroscopy confirmed that the peptides maintain an exendin-4-like structure with its characteristic tryptophan-cage fold motif that is responsible for favorable chemical and physical stability.
The CB1 receptor antagonist, rimonabant, affects the endocannabinoid system and causes a sustained reduction in body weight (BW) despite the transient nature of the reduction in food intake. Therefore, in a multiple-dose study, female candy-fed Wistar rats were treated with rimonabant (10 mg/kg) and matched with pair-fed rats to distinguish between hypophagic action and hypothesized effects on energy expenditure. Within the first week of treatment, rimonabant reduced BW nearly to levels of standard rat chow-fed rats. Evaluation of energy balance (energy expenditure measured by indirect calorimetry in relation to metabolizable energy intake calculated by bomb calorimetry) revealed that increased energy expenditure based on increased fat oxidation contributed more to sustained BW reduction than reduced food intake. A mere food reduction through pair feeding did not result in comparable effects because animals reduced their energy expenditure to save energy stores. Because fat oxidation measured by indirect calorimetry increased immediately after dosing in the postprandial state, the acute effect of rimonabant on lipolysis was investigated in postprandial male rats. Rimonabant elevated free fatty acids postprandially, demonstrating an inherent pharmacological activity of rimonabant to induce lipolysis and not secondarily postabsorptively due to reduced food intake. We conclude that the weight-reducing effect of rimonabant was due to continuously elevated energy expenditure based on increased fat oxidation driven by lipolysis from fat tissue as long as fat stores were elevated. When the amount of endogenous fat stores declined, rimonabant-induced increased energy expenditure was maintained by a re-increase in food intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.