It is a fundamental problem in geometry to decide which moduli spaces of polarized algebraic varieties are embedded by their period maps as Zariski open subsets of locally Hermitian symmetric domains. In the present work we prove that the moduli space of Calabi-Yau threefolds coming from eight planes in P 3 does not have this property. We show furthermore that the monodromy group of a good family is Zariski dense in the corresponding symplectic group. Moreover, we study a natural sublocus which we call hyperelliptic locus, over which the variation of Hodge structures is naturally isomorphic to wedge product of a variation of Hodge structures of weight one. It turns out the hyperelliptic locus does not extend to a Shimura subvariety of type III (Siegel space) within the moduli space. Besides general Hodge theory, representation theory and computational commutative algebra, one of the proofs depends on a new result on the tensor product decomposition of complex polarized variations of Hodge structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.