Abstract. Globally, the year 2003 is associated with one of the largest atmospheric CO 2 rises on record. In the same year, Europe experienced an anomalously strong flux of CO 2 from the land to the atmosphere associated with an exceptionally dry and hot summer in Western and Central Europe. In this study we analyze the magnitude of this carbon flux anomaly and key driving ecosystem processes using simulations of seven terrestrial ecosystem models of different complexity and types (process-oriented and diagnostic). We address the following questions: (1) how large were deviations in the net European carbon flux in 2003 relative to a shortterm baseline (1998)(1999)(2000)(2001)(2002) C for Western Europe and between 24 and -129 Tg C for Central Europe depending on the model used. All models responded to a dipole pattern of the climate anomaly in 2003. In Western and Central Europe NEP was reduced due to heat and drought. In contrast, lower than normal temperatures and higher air humidity decreased NEP over Northeastern Europe. While models agree on the sign of changes in simulated NEP and gross primary productivity in 2003 over Western and Central Europe, models diverge in the estimates of anomalies in ecosystem respiration. Except for two process models which simulate respiration increase, most models simulated a decrease in ecosystem respiration in 2003. The diagnostic models showed a weaker decrease in ecosystem respiration than the process-oriented models.Based on the multi-model simulations we estimated the total carbon flux anomaly over the 2003 growing season in Europe to range between -0.02 and -0.27 Pg C relative to the net carbon flux in 1998-2002.
This paper examines long-term eddy covariance data from 18 European and 17 North American and Asian forest, wetland, tundra, grassland, and cropland sites under nonwater-stressed conditions with an empirical rectangular hyperbolic light response model and a single layer two light-class carboxylase-based model. Relationships according to ecosystem functional type are demonstrated between empirical and physiological parameters, suggesting linkages between easily estimated parameters and those with greater potential for process interpretation. Relatively sparse documentation of leaf area index dynamics at flux tower sites is found to be a major difficulty in model inversion and flux interpretation. Therefore, a simplification of the physiological model is carried out for a subset of European network sites with extensive ancillary data. The results from these selected sites are used to derive a new parameter and means for comparing empirical and physiologically based methods across all sites, regardless of ancillary data. The results from the European analysis are then compared with results from the other Northern Hemisphere sites and similar relationships for the simplified process-based parameter were found to hold for European, North American, and Asian temperate and boreal climate zones. This parameter is useful for bridging between flux network observations and continental scale spatial simulations of vegetation/atmosphere carbon dioxide exchange.
Abstract. Globally, the year 2003 is associated with one of the largest atmospheric CO2 rises on record. In the same year, Europe experienced an anomalously strong flux of CO2 from the land to the atmosphere associated with an exceptionally dry and hot summer in Western and Central Europe. In this study we analyze the magnitude of this carbon flux anomaly and key driving ecosystem processes using simulations of seven terrestrial ecosystem models of different complexity and types (process-oriented and diagnostic). We address the following questions: (1) how large were deviations in the net European carbon flux in 2003 relative to a short-term baseline (1998–2002) and to longer-term variations in annual fluxes (1980 to 2005), (2) which regions exhibited the largest shift in carbon fluxes during the growing season 2003, and (3) which processes controlled the carbon balance anomaly . In Western and Central Europe, the anomaly in net ecosystem productivity (NEP) over growing season 2003 was outside the 1σ bound of the carbon flux anomalies for 1980–2005. The estimated growing season anomaly ranged between –29 and –196 Tg C for Western Europe and between 13 and –94 Tg C for Central Europe depending on the model used. All models responded to a dipole pattern of the climate anomaly in 2003. In Western and Central Europe NEP was reduced due to heat and drought. Over Western Russia NEP was decreased in response to lower than normal temperatures and high precipitation. While models agree on changes in simulated NEP and gross primary productivity anomalies in 2003 over Western and Central Europe, models diverge in the estimates of anomalies in ecosystem respiration. Except for two process models which simulate respiration increase, most models simulated a decrease in ecosystem respiration in 2003. The diagnostic models showed a weaker decrease in ecosystem respiration than the process-oriented models. Based on the multi-model simulations we estimated the total carbon flux anomaly over the 2003 growing season in Europe to range between –0.02 and –0.27 Pg C relative to the net flux in 1998–2002.
-Tree xylem sapflow rates of 140-year-old Norway spruce (Picea abies) were scaled to the stand level and compared to canopy transpiration predicted by the stand gas exchange model STANDFLUX. Variation in sapflux densities between individual sensors was high (coefficient of variance = 0.4) and included both variation within and between trees, but it was not different between two applied sapflow methodologies (radial flowmeter
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.