This paper discusses options for testing correspondence algorithms in stereo or motion analysis that are designed or considered for vision-based driver assistance. It introduces a globally available database, with a main focus on testing on video sequences of real-world data. We suggest the classification of recorded video data into situations defined by a cooccurrence of some events in recorded traffic scenes. About 100-400 stereo frames (or 4-16 s of recording) are considered a basic sequence, which will be identified with one particular situation. Future testing is expected to be on data that report on hours of driving, and multiple hours of long video data may be segmented into basic sequences and classified into situations. This paper prepares for this expected development. This paper uses three different evaluation approaches (prediction error, synthesized sequences, and labeled sequences) for demonstrating ideas, difficulties, and possible ways in this future field of extensive performance tests in vision-based driver assistance, particularly for cases where the ground truth is not available. This paper shows that the complexity of real-world data does not support the identification of general rankings of correspondence techniques on sets of basic sequences that show different situations. It is suggested that correspondence techniques should adaptively be chosen in real time using some type of statistical situation classifiers.
Abstract. The recently published KITTI stereo dataset provides a new quality of stereo imagery with partial ground truth for benchmarking stereo matchers. Our aim is to test the value of stereo confidence measures (e.g. a left-right consistency check of disparity maps, or an analysis of the slope of a local interpolation of the cost function at the taken minimum) when applied to recorded datasets, such as published with KITTI. We choose popular measures as available in the stereo-analysis literature, and discuss a naive combination of these. Evaluations are carried out using a sparsification strategy. While the best single confidence measure proved to be the right-left consistency check for high disparity map densities, the best overall performance is achieved with the proposed naive measure combination. We argue that there is still demand for more challenging datasets and more comprehensive ground truth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.