Determination of glomerular filtration rate (GFR) in conscious mice is cumbersome for the experimenter and stressful for the animals. Here we report on a simple new technique allowing the transcutaneous measurement of GFR in conscious mice. This approach extends our previously developed technique for rats to mice. The technique relies on a miniaturized device equipped with an internal memory that permits the transcutaneous measurement of the elimination kinetics of the fluorescent renal marker FITC-sinistrin. This device is described and validated compared with FITC-sinistrin plasma clearance in healthy, unilaterally nephrectomized and pcy mice. In summary, we describe a technique allowing the measurement of renal function in freely moving mice independent of blood or urine sampling as well as of laboratory assays.
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo’s tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
The cytokine erythropoietin (Epo) mediates various cell homeostatic responses to environmental challenges and pathological insults. While stimulation of vertebrate erythrocyte production is mediated by homodimeric “classical” Epo receptors, alternative receptors are involved in neuroprotection. However, their identity remains enigmatic due to complex cytokine ligand and receptor interactions and conflicting experimental results. Besides the classical Epo receptor, the family of type I cytokine receptors also includes the poorly characterized orphan cytokine receptor-like factor 3 (CRLF3) present in vertebrates including human and various insect species. By making use of the more simple genetic makeup of insect model systems, we studied whether CRLF3 is a neuroprotective Epo receptor in animals. We identified a single ortholog of CRLF3 in the beetle Tribolium castaneum, and established protocols for primary neuronal cell cultures from Tribolium brains and efficient in vitro RNA interference. Recombinant human Epo as well as the non-erythropoietic Epo splice variant EV-3 increased the survival of serum-deprived brain neurons, confirming the previously described neuroprotective effect of Epo in insects. Moreover, Epo completely prevented hypoxia-induced apoptotic cell death of primary neuronal cultures. Knockdown of CRLF3 expression by RNA interference with two different double stranded RNA (dsRNA) fragments abolished the neuroprotective effect of Epo, indicating that CRLF3 is a crucial component of the insect Epo-responsive receptor. This suggests that a common urbilaterian ancestor of the orphan human and insect cytokine receptor CRLF3 served as a neuroprotective receptor for an Epo-like cytokine. Our work also suggests that vertebrate CRLF3, like its insect ortholog, might represent a tissue protection-mediating receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.