During the last decade, synthetic aperture radar (SAR) became an indispensable source of information in Earth observation. This has been possible mainly due to the current trend toward higher spatial resolution and novel imaging modes. A major driver for this development has been and still is the airborne SAR technology, which is usually ahead of the capabilities of spaceborne sensors by several years. Today's airborne sensors are capable of delivering high-quality SAR data with decimeter resolution and allow the development of novel approaches in data analysis and information extraction from SAR. In this paper, a review about the abilities and needs of today's very high-resolution airborne SAR sensors is given, based on and summarizing the longtime experience of the German Aerospace Center (DLR) with airborne SAR technology and its applications. A description of the specific requirements of high-resolution airborne data processing is presented, followed by an extensive overview of emerging applications of high-resolution SAR. In many cases, information extraction from high-resolution airborne SAR imagery has achieved a mature level, turning SAR technology more and more into an operational tool. Such abilities, which are today mostly limited to airborne SAR, might become typical in the next generation of spaceborne SAR missions.
Bistatic configuration is an attractive concept for spaceborne and airborne SAR missions when distributed radars are necessary as for example in the case of interferometric applications. The first reason is the important cost reduction achieved over the multiple radar elements, by having only one transmitter (expensive part) and multiple receivers. The most promising applications are single-pass interferometry with a large baseline and target or surface characterisation from bistatic scattering signature analysis. In a defence context, the improved stealth associated with the receive-only component can provide a wider operational capability. In order to explore the potentials and technical challenges associated with bistatic radar, DLR and ONERA have conducted a joint bistatic airborne radar experiment involving both their SAR systems E-SAR and RAMSES between October 2002 and February 2003. Two main geometrical configurations were flown to explore different scientific and technical objectives. In the first geometrical configuration, the quasi-monostatic mode, the two planes were flying very close to each other to acquire interferometric data in a single-pass cross-platform configuration with large interferometric baselines. The second geometrical configuration was designed to acquire images with a large bistatic angle. The two planes were flying on parallel tracks around 2 km apart, at about the same altitude, with the antennas pointing at the same area on the ground. The authors describe this research programme, including the preparation phase, the analysis of the technological challenges that had to be solved before the acquisition, the strategy adopted for bistatic image processing, the first results and a preliminary analysis of the acquired images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.