Steroid hormones modulate many physiological processes. The effects of steroids that are mediated by the modulation of gene expression are known to occur with a time lag of hours or even days. Research that has been carried out mainly in the past decade has identified other responses to steroids that are much more rapid and take place in seconds or minutes. These responses follow nongenomic pathways, and they are not rare.
Lösel, Ralf M., Elisabeth Falkenstein, Martin Feuring, Armin Schultz, Hanns-Christian Tillmann, Karin Rossol-Haseroth, and Martin Wehling. Nongenomic Steroid Action: Controversies, Questions, and Answers. Physiol Rev 83: 965–1016, 2003; 10.1152/physrev.00003.2003.—Steroids may exert their action in living cells by several ways: 1) the well-known genomic pathway, involving hormone binding to cytosolic (classic) receptors and subsequent modulation of gene expression followed by protein synthesis. 2) Alternatively, pathways are operating that do not act on the genome, therefore indicating nongenomic action. Although it is comparatively easy to confirm the nongenomic nature of a particular phenomenon observed, e.g., by using inhibitors of transcription or translation, considerable controversy exists about the identity of receptors that mediate these responses. Many different approaches have been employed to answer this question, including pharmacology, knock-out animals, and numerous biochemical studies. Evidence is presented for and against both the participation of classic receptors, or proteins closely related to them, as well as for the involvement of yet poorly understood, novel membrane steroid receptors. In addition, clinical implications for a wide array of nongenomic steroid actions are outlined.
Progesterone receptor membrane component-1 (PGRMC1) interacts with plasminogen activator inhibitor RNA binding protein-1 (PAIRBP1), a membrane-associated protein involved in the antiapoptotic action of progesterone (P4). In this paper, the first studies were designed to assess the ovarian expression pattern of PGRMC1 and PAIRBP1. Western blot analysis revealed that spontaneously immortalized granulosa cells (SIGCs) as well as granulosa and luteal cells express both proteins. Luteal cells were shown to express more PGRMC1 than granulosa cells. Immunohistochemical studies confirmed this and demonstrated that PGRMC1 was present in thecal/stromal cells, ovarian surface epithelial cells, and oocytes. PAIRBP1 was also expressed in thecal/stromal cells and ovarian surface epithelial cells but not oocytes. Furthermore, PAIRBP1 and PGRMC1 were detected among the biotinylated surface proteins that were isolated by avidin affinity purification, indicating that they localized to the extracellular surface of the plasma membrane. Confocal microscopy revealed that both of these proteins colocalize to the plasma membrane as well as the cytoplasm. The second studies were designed to assess PGRMC1's role in P4's antiapoptotic actions. These studies showed that overexpression of PGRMC1 increased 3H-P4 binding and P4 responsiveness. Conversely, treatment with a PGRMC1 antibody blocked P4's antiapoptotic action. Taken together, the present findings indicate that both PAIRBP1 and PGRMC1 show a similar expression pattern within the ovary and colocalize to the extracellular surface of the plasma membrane. At the plasma membrane, these two proteins interact to form a complex that is required for P4 to transduce its antiapoptotic action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.