Biallelic ENPP1 deficiency in humans induces generalized arterial calcification of infancy (GACI) and/or autosomal recessive hypophosphatemic rickets type 2 (ARHR2). The latter is characterized by markedly increased circulating FGF23 levels and renal phosphate wasting, but aberrant skeletal manifestations associated with heterozygous ENPP1 deficiency are unknown. Here, we report three adult men with early onset osteoporosis who presented with fractures in the thoracic spine and/or left radius, mildly elevated circulating FGF23, and hypophosphatemia. Total hip bone mineral density scans demonstrated osteoporosis (Z‐score < −2.5) and HRpQCT demonstrated microarchitectural defects in trabecular and cortical bone. Next‐generation sequencing revealed heterozygous loss‐of‐function mutations in ENPP1 previously observed as biallelic mutations in infants with GACI. In addition, we present bone mass and structure data as well as plasma pyrophosphate (PPi) data of two siblings suffering from ARHR2 in comparison to their heterozygous and wild‐type family members indicative of an ENPP1 gene dose effect. The skeletal phenotype in murine Enpp1 deficiency yielded nearly identical findings. Ten‐week‐old male Enpp1 asj/asj mice exhibited mild elevations in plasma FGF23 and hypophosphatemia, and micro‐CT analysis revealed microarchitectural defects in trabecular and cortical bone of similar magnitude to HRpQCT defects observed in humans. Histomorphometry revealed mild osteomalacia and osteopenia at both 10 and 23 weeks. The biomechanical relevance of these findings was demonstrated by increased bone fragility and ductility in Enpp1 asj/asj mice. In summary, ENPP1 exerts a gene dose effect such that humans with heterozygous ENPP1 deficiency exhibit intermediate levels of plasma analytes associated with bone mineralization disturbance resulting in early onset osteoporosis. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
WNT1mutations in humans are associated with a new form of osteogenesis imperfecta and with early-onset osteoporosis, suggesting a key role of WNT1 in bone mass regulation. However, the general mode of action and the therapeutic potential of Wnt1 in clinically relevant situations such as aging remain to be established. Here, we report the high prevalence of heterozygousWNT1mutations in patients with early-onset osteoporosis. We show that inactivation of Wnt1 in osteoblasts causes severe osteoporosis and spontaneous bone fractures in mice. In contrast, conditional Wnt1 expression in osteoblasts promoted rapid bone mass increase in developing young, adult, and aged mice by rapidly increasing osteoblast numbers and function. Contrary to current mechanistic models, loss of Lrp5, the co-receptor thought to transmit extracellular WNT signals during bone mass regulation, did not reduce the bone-anabolic effect of Wnt1, providing direct evidence that Wnt1 function does not require the LRP5 co-receptor. The identification of Wnt1 as a regulator of bone formation and remodeling provides the basis for development of Wnt1-targeting drugs for the treatment of osteoporosis.
The significantly improved results on 3 scores after 15 years suggest that MACI represents a suitable treatment of local cartilage defects in the knee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.