This is an experimental study on human cadaver spines. The objective of this study is to compare the pullout forces between three screw augmentation methods and two different screw designs. Surgical interventions of patients with osteoporosis increase following the epidemiological development. Biomechanically the pedicle provides the strongest screw fixation in healthy bone, whereas in osteoporosis all areas of the vertebra are affected by the disease. This explains the high screw failure rates in those patients. Therefore PMMA augmentation of screws is often mandatory. This study involved investigation of the pullout forces of augmented transpedicular screws in five human lumbar spines (L1-L4). Each spine was treated with four different methods: non-augmented unperforated (solid) screw, perforated screw with vertebroplasty augmentation, solid screw with vertebroplasty augmentation and solid screw with balloon kyphoplasty augmentation. Screws were augmented with Polymethylmethacrylate (PMMA). The pullout forces were measured for each treatment with an Instron testing device. The bone mineral density was measured for each vertebra with Micro-CT. The statistical analysis was performed with a two-sided independent student t test. Forty screws (10 per group and level) were inserted. The vertebroplasty-augmented screws showed a significant higher pullout force (mean 918.5 N, P = 0.001) than control (mean 51 N), the balloon kyphoplasty group did not improve the pullout force significantly (mean 781 N, P > 0.05). However, leakage occurred in some cases treated with perforated screws. All spines showed osteoporosis on Micro-CT. Vertebroplasty-augmented screws, augmentation of perforated screws and balloon kyphoplasty augmented screws show higher pullout resistance than non-augmented screws. Significant higher pullout forces were only reached in the vertebroplasty augmented vertebra. The perforated screw design led to epidural leakage due to the position of the perforation in the screw. The position of the most proximal perforation is critical, depending on screw design and proper insertion depth. Nevertheless, using a properly designed perforated screw will facilitate augmentation and instrumentation in osteoporotic spines.
We could demonstrate that immediate MSCT in patients with blunt major trauma leads to more accurate and faster diagnosis, and reduction of early clinical time intervals. We also observed a reduction in ventilation, ICU, and hospital days, and in organ failure rates, though this might have been partly due to small differences in case mix. The "MSCT protocol" algorithm seems to be safe and effective.
Early unreamed IMN of femoral fractures in multiply injured patients with severe thoracic trauma is a safe procedure and seems to be justified to achieve early definitive care.
Double biodegradable cross-pins are increasingly used for femoral fixation in arthroscopically assisted reconstruction of the anterior cruciate ligament (ACL). There are no studies combining functional outcome analysis, radiographs and magnetic resonance images (MRI) to evaluate this technique. The authors examined 45 patients after ACL reconstruction using double biodegradable femoral cross-pin fixation and biodegradable tibial interference screw fixation with a minimum follow-up of 24 months. Clinical evaluation included International Knee Documentation Committee (IKDC) and modified Lysholm score. Radiographic analysis included standard X-rays in anterior-posterior and lateral views and Telos stress device measurements. MRI was analyzed to obtain information about hardware, intra-articular graft, osseous graft-integration and cartilage. IKDC score revealed 28 (62.2%) patients with normal knee function (group A), 15 (33.3%) patients with nearly normal (group B) knee function and 2 (4.4%) patients with abnormal knee function (group C). The Lysholm score was 94.6 (+/-7.2) in the operated knee and 98.8 (+/-7.4) in the non-operated knee. Mean Telos stress device values were +4.6 (+/-2.6) in the operated and +3.9 (+/-2.4) in the non-operated knee. MRI showed an intact intra-articular graft in all but one patient. Complete femoral graft integration was seen in 88.9% and complete tibial graft integration in 86.7%. Biodegradable cross-pins were partially or fully visible in all patients. The biodegradable tibial interference screw was fully visible in 16 (35.6%) and partially visible in 20 (44.4%) patients. Thirty-one (68.9%) patients showed signs of cartilage degeneration on MRI at follow-up. The graft fixation with double biodegradable pin fixation appears to be a reliable technique for ACL reconstruction providing a stable close-to-joint graft fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.