In order to produce sophorolipids from whey, thereby lowering the lactose content and biological oxygen demand, a two-step batch cultivation process was developed including medium sterilization by filtration. In the first step, whey was sterilized by a combination of crossflow and sterile filtration. Because the sophorolipid-producing yeast Candida bombicola ATCC 22214 was not able to use lactose as a carbon source directly, the oleaginous yeast Cryptococcus curvatus ATCC 20509 was grown on deproteinized whey concentrates (DWC). With 1:1 diluted DWC-20, lactose was consumed as the carbon source and biomass (24 g/l dry weight content) as well as single-cell oil (SCO, 10 g/l) were produced. The cultivation broth was disrupted with a glass bead mill and it served as medium for growth (29 g cell dry mass/l) and sophorolipid production (12 g/l) of the yeast C. bombicola.
Sophorolipids, obtained by a two-stage process starting from deproteinized whey concentrate using Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214, were compared to products from one-stage processes, using different lipidic compounds as substrates. Results showed that above all carbon source and not cultivation conditions had a distinct influence on the composition of the crude product mixture and therefore on the physicochemical and biological properties of the sophorolipids, such as, for example, surface activity, cytotoxicity and stability against hydrolases. The results were completed by corresponding data for purified mono- and diacetylated (17-hydroxyoctadecenoic)-1',4"-lactonized sophorolipids. Crude sophorolipid mixtures showed moderate to good surface active properties (SFTmin 39 mN m-1, CMC 130 mg l-1), water solubilities (2-3 g l-1) and low cytotoxicities (LC50 300-700 mg l-1). In contrast, purified sophorolipids were more surface active (SFTmin 36 mN m-1, CMC 10 mg l-1), less water soluble (max. 70 mg l-1) and showed stronger cytotoxic effects (LC50 15 mg l-1). Incubation of crude sophorolipid mixtures with different hydrolases demonstrated that treatment with commercially available lipases such as from Candida rugosa and Mucor miehei distinctly reduced the surface active properties of the sophorolipids, while treatment with porcine liver esterase and glycosidases had no effect.
Misfolded or unassembled secretory proteins are retained in the endoplasmic reticulum (ER) and subsequently degraded by the cytosolic ubiquitin-proteasome system. This requires their retrograde transport from the ER lumen into the cytosol, which is mediated by the Sec61 translocon. It had remained a mystery whether ER-localised soluble proteins are at all capable of re-entering the Sec61 channel de novo or whether a permanent contact of the imported protein with the translocon is a prerequisite for retrograde transport. In this study we analysed two new variants of the mutated yeast carboxypeptidase yscY, CPY*: a carboxy-terminal fusion protein of CPY* and pig liver esterase and a CPY* species carrying an additional glycosylation site at its carboxy-terminus. With these constructs it can be demonstrated that the newly synthesised CPY* chain is not retained in the translocation channel but reaches its ER lumenal side completely. Our data indicate that the Sec61 channel provides the essential pore for protein transport through the ER membrane in either direction; persistent contact with the translocon after import seems not to be required for retrograde transport.z 1999 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.