This has given life cycle management of infrastructure an increasingly important role. Reliable inspection and monitoring tools are therefore in demand. A reliable prognosis of the condition and behaviour of a structure is an important basis for an effective service life management. Furthermore, traffic loads and loads due to changing environmental conditions increased during the last years and will increase in the future. Repair and maintenance have to be performed, which requires reliable concepts and measurement of data, which is preferably gained through non-destructive methods. Furthermore, infrastructural constructions often have to be reconditioned when they are in use i. e. they cannot be torn down and rebuilt. Therefore, reliable diagnosis of the state of 'hot spots' is required. Within the frame of the Franco-German project FilameNDT steel wires of external tendon ducts and prestressing strands, prestressing rods, and stay cables are investigated. With regards to this field of application, practical relevance can only be gained when easily applicable and long ranging methods are used. The evaluation of extended structural elements using non-contact movable systems {bulk wave and guided wave application [Piezo, electromagnetic acoustic transducers (EMAT)], magnetic flux leakage (MFL), Micromagnetic methods} and those of localized elements based on elastic guided wave propagation are complementary since they can be applied according to the various accessibility conditions of the tested objects. Inspection and monitoring scenarios were developed, hot spots were identified, and lab tests as well as field tests were carried out. A real cable stayed bridge in the Saarland region is available for monitoring within the frame of the project. Results from local investigations using guided waves and from monitoring field tests with micromagnetic sensors are presented and discussed. The results show the scenarios where the non-destructive methods are applicable and how the results can be used for structural health monitoring and maintenance concepts
Electromagnetic properties are an interesting means for monitoring a variety of materials' mechanical properties in ferro- and paramagnetic materials non-destructively. Those properties include uni- und multi-axial stress states as well as plasticity and fatigue damage and can be measured at macro- as well as at microscopic scales, depending on what measurement equipment will be used. The article describes the general electromagnetic phenomena to be considered as well as the equipment to be used before presenting a variety of different experimental results from which the materials mechanical properties mentioned above can be directly derived being an ideal means for monitoring the health of any magnetic metallic structure
AbstractMicromagnetic materials characterization is a nondestructive means of predicting mechanical properties and stress of steel and iron products. The method is based on the circumstance that both mechanical and magnetic behaviour relate to microstructure over similar interaction mechanisms, which leads to characteristic correlations between mechanical and magnetic properties of ferromagnetic materials. The prediction of mechanical properties or stress from micromagnetic parameters represents an inverse problem commonly addressed by regression and classification approaches. Challenges for the industrial application of micromagnetic methods lie in the development of robust sensors, definition of significant features, and implementation of powerful machine learning algorithms for a reliable quantitative target value prediction by processing of the micromagnetic features. This contribution briefly explains the background of micromagnetics, describes the typical challenges experienced in practice and provides insight into latest progress in the application of machine learning to micromagnetic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.