While we know that the visualization of quantifiable uncertainty impacts the confidence in insights, little is known about whether the same is true for uncertainty that originates from aspects so inherent to the data that they can only be accounted for qualitatively. Being embedded within an archaeological project, we realized how assessing such qualitative uncertainty is crucial in gaining a holistic and accurate understanding of regional spatio-temporal patterns of human settlements over millennia. We therefore investigated the impact of visualizing qualitative implicit errors on the sense-making process via a probe that deliberately represented three distinct implicit errors, i.e. differing collection methods, subjectivity of data interpretations and assumptions on temporal continuity. By analyzing the interactions of 14 archaeologists with different levels of domain expertise, we discovered that novices became more actively aware of typically overlooked data issues and domain experts became more confident of the visualization itself. We observed how participants quoted social factors to alleviate some uncertainty, while in order to minimize it they requested additional contextual breadth or depth of the data. While our visualization did not alleviate all uncertainty, we recognized how it sparked reflective meta-insights regarding methodological directions of the data. We believe our findings inform future visualizations on how to handle the complexity of implicit errors for a range of user typologies and for highly data-critical application domains such as the digital humanities.
The western Taurus mountains, southwest Turkey, comprise a diverse set of landscape zones that are characterized by great altitude variations. This article focuses on the agricultural so-called marginal highlands within this mountainous region. Large parts of the uplands are labeled “marginal” nowadays as they are not regarded as highly productive in terms of agricultural output or permanent occupation. Three decades of interdisciplinary research within the Sagalassos Archaeological Research Project (KU Leuven) have provided an enormous amount of archaeological, bioarchaeological, and geoarchaeological datasets that will be brought together in this article to explore diachronic patterns in human-environmental interactions within these areas. The study demonstrates not only the archaeological value of a highland area, but its vulnerability for human impact as well. The changing environments both naturally and sociopolitically favored a more resilient behavior of the human groups within the highlands.
The relative importance of deterministic and stochastic processes driving patterns of human settlement remains controversial. A main reason for this is that disentangling the drivers of distributions and geographic clustering at different spatial scales is not straightforward and powerful analytical toolboxes able to deal with this type of data are largely deficient. Here we use a multivariate statistical framework originally developed in community ecology, to infer the relative importance of spatial and environmental drivers of human settlement. Using Moran’s eigenvector maps and a dataset of spatial variation in a set of relevant environmental variables we applied a variation partitioning procedure based on redundancy analysis models to assess the relative importance of spatial and environmental processes explaining settlement patterns. We applied this method on an archaeological dataset covering a 15 km2 area in SW Turkey spanning a time period of 8000 years from the Late Neolithic/Early Chalcolithic up to the Byzantine period. Variation partitioning revealed both significant unique and commonly explained effects of environmental and spatial variables. Land cover and water availability were the dominant environmental determinants of human settlement throughout the study period, supporting the theory of the presence of farming communities. Spatial clustering was mainly restricted to small spatial scales. Significant spatial clustering independent of environmental gradients was also detected which can be indicative of expansion into unsuitable areas or an unexpected absence in suitable areas which could be caused by dispersal limitation. Integrating historic settlement patterns as additional predictor variables resulted in more explained variation reflecting temporal autocorrelation in settlement locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.