The halogen‐bonding interaction is one of the rising stars in supramolecular chemistry. Although other weak interactions and their influence on the structure and chemistry of various molecules, complexes and materials have been investigated thoroughly, the field of halogen bonding is still quite unexplored and its impact on chemistry in general is yet to be fully revealed. In principle, every Y–X bond (Y = electron‐withdrawing atom or moiety, X = halogen atom) can act as a halogen‐bond donor when the halogen is polarized enough by Y. Perfluorohalocarbons are iconic halogen‐bond donor molecules in which Y is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. In this article, alternative halogen‐bond motifs such as X2···A and Ar–X···A [A = Lewis basic halogen‐bond‐accepting atom of a molecule or ion; Ar = neutral or charged (hetero)aromatic system] are reviewed. In addition, haloalkenes, haloalkynes, N‐haloamides and other non‐metallic halogen‐bond donors and their respective halogen‐bonded structures will also be described. Although purely organic halogen‐bonding motifs are very prominent, the role of metal complexes in halogen bonding is becoming increasingly evident as well, which is also reflected in this review. Finally, halogen bonding in solution is briefly highlighted. Contemporary research is proving that halogen bonding is more than a solid‐state phenomenon and is now a well‐recognized weak interaction in chemistry.
For the efficient self-assembly of metallo-supramolecular complexes, not only reversibility is required but also two other properties have to be controlled as well: (i) The right binding sites need to be programmed into the building blocks at the appropriate positions. (ii) The building blocks must be rigid enough to support the geometrical arrangement and to avoid the unfavorable entropy effects connected with the conformational fixation of flexible molecules. A series of different bis-pyridyl ligands is reported which self-assemble with (dppp)M(OTf) 2 complexes (dppp = 1,3-bis-(diphenylphosphino)propane; M = Pd (II), Pt (II)) to yield squares and/or triangles as the products. Enthalpic contributions (higher strain in the triangle) and entropic contributions (higher number of triangles from the same building blocks) determine the equilibrium. The effects of concentration, temperature, and solvent properties on the equilibrium have been studied. To characterize the complexes under study, a combination of (1)H, (31)P, and diffusion-ordered NMR spectroscopy, electrospray-ionization Fourier-transform ion-cyclotron-resonance mass spectrometry, and X-ray crystallography is needed. Variable-temperature NMR spectroscopy provides evidence for fast ligand-exchange processes occurring for the Pd complexes, while the Pt complexes exchange ligands much more slowly.
The synthesis of the nanoscaled bismuth oxido clusters [Bi(38)O(45)(NO(3))(20)(DMSO)(28)](NO(3))(4)·4DMSO (1a) and [Bi(38)O(45)(OH)(2)(pTsO)(8)(NO(3))(12)(DMSO)(24)](NO(3))(2)·4DMSO·2H(2)O (2) starting from the basic bismuth nitrate [Bi(6)O(4)(OH)(4)](NO(3))(6)·H(2)O is reported herein. Single-crystal X-ray diffraction analysis, ESI mass spectrometry, thermogravimetric analysis, and molecular dynamics simulation were used to study the formation, structure, and stability of these large metal oxido clusters. Compounds 1a and 2 are based on a [Bi(38)O(45)](24+) core, which is structurally related to δ-Bi(2)O(3). Examination of the fragmentation pathways of 1a and 2 by infrared multi-photon dissociation (IRMPD) tandem MS experiments allows the identification of novel bismuth oxido cluster species in the gas phase.
The reaction of [Bi(22)O(26)(OSiMe(2)tBu)(14)] (1) in THF with salicylic acid gave [Bi(22)O(24)(HSal)(14)] (2) first, which was converted into [Bi(38)O(45)(HSal)(22)(OH)(2)(DMSO)(16.5)]·DMSO·H(2)O (3·DMSO·H(2)O) after dissolution and crystallization from DMSO. Single-crystal X-ray diffraction analysis and ESI mass spectrometry associated with infrared multi-photon dissociation (IRMPD) tandem MS experiments confirm the formation of the large and quite stable bismuth oxido cluster 3. The reaction of compound 2 with the butoxycarbonyl(BOC)-protected amino acids phenylalanine and valine (BOC-PheOH and BOC-ValOH), respectively, resulted in the formation of chiral [Bi(38)O(45)(BOC-AA)(22)(OH)(2)] (AA=deprotonated amino acid), as shown by a combination of different analytical techniques such as elemental analysis, dynamic light scattering, circular dichroism spectroscopy, and ESI mass spectrometry.
A simple one-pot method for the preparation of subnanometre-size benzotriazolate (BTA) protected copper clusters, Cu(n)BTA(m), is reported. The clusters were analyzed by optical and infrared spectroscopy, mass spectrometry and transmission electron microscopy together with computational methods. We suggest a structural motif where the copper core of the Cu(n)BTA(m) clusters is protected by BTA-Cu(i)-BTA units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.