Changes of structural properties of tobermorite in autoclaved aerated concrete (AAC) for various compositions were characterized and the disadvantages of SEM analysis in this context are discussed. The influence of variations in the chemical composition of raw materials on lattice parameters, morphology and domain sizes of tobermorite was investigated by XRD and for comparison by SEM analysis. Particularly the effect of substitution by Al3+ and (SO4)2− in tobermorite structure was examined. The dimensions of coherently scattering domains were calculated based on the refinement of anisotropic peak broadening of tobermorite in XRD diffractograms using a Rietveld compatible approach. No effect of (SO4)2− on the domain sizes and lattice parameters of tobermorite could be observed. The amount of anhydrite detected by quantitative XRD analysis indicates that all of the available (SO4)2− is present as anhydrite. Lath-like shapes of domains and a larger c parameter are calculated whenever Al3+ is incorporated in a considerable amount. Formation of katoite can be observed very clearly in SEM micrographs whenever the amount of available Al3+ exceeds a distinct value in the dry mix. The effect of Al3+ and (SO4)2− on tobermorite morphology could not be observed clearly by SEM analysis in AAC samples.
The mechanical behavior of bond coats depends on their chemical composition. Important for the mechanical behavior is the Al content of β-NiAl based coatings. Additionally, internal stresses are present and change during thermal cycling. Therefore bond coats with different Ni and Al content in the as-coated and thermally cycled state are investigated. For the first time, new small scaled methods are used to obtain fracture toughness and internal stresses of real bond coat systems. Micro cantilever bending and stress relaxation tests were performed on a local scale by employing focused ion beam milling. Additionally, the influence of NiAl composition on Young's modulus and hardness is studied by nanoindentation. Results show an increase of Young's modulus with Al content. In off-stoichiometric NiAl a higher hardness and fracture toughness than in binary NiAl is found. The internal stresses change from tensile in as-coated to compressive stresses in thermally cycled bond coats, respectively.
Oxidation protection coatings are required for thermally highly stressed components such as turbine blades in aircraft engines. Cyclic oxidation experiments were performed on a NiCoCrAlY protective coating of a nickel-based superalloy and hardness and modulus of elasticity (mechanical properties) were determined by nanoindentation before and after the experiments. Microstructure and chemical composition were characterized by means of scanning electron microscopy. Here, the focus is on the phase identification by combining electron backscatter diffraction and energy dispersive X-ray spectroscopy. Findings indicate that the chemical composition strongly influences the mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.