A second-generation bio-based feedstock—tall oil fatty acids—was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarctica lipase B under the trade name Novozym® 435. High functionality bio-polyols were synthesised from the obtained epoxidated tall oil fatty acids by oxirane ring-opening and subsequent esterification reactions with different polyfunctional alcohols: trimethylolpropane and triethanolamine. The synthesised epoxidised tall oil fatty acids (ETOFA) were studied by proton nuclear magnetic resonance. The chemical structure of obtained polyols was studied by Fourier-transform infrared spectroscopy and size exclusion chromatography. Average molecular weight and polydispersity of polyols were determined from size exclusion chromatography data. The obtained polyols were used to develop rigid polyurethane (PU) foam thermal insulation material with an approximate density of 40 kg/m3. Thermal conductivity, apparent density and compression strength of the rigid PU foams were determined. The rigid PU foams obtained from polyols synthesised using Novozym® 435 catalyst had superior properties in comparison to rigid PU foams obtained from polyols synthesised using Amberlite IR-120 H. The developed rigid PU foams had an excellent thermal conductivity of 21.2–25.9 mW/(m·K).
This research is dedicated to the study on the formation of levoglucosenone and other main volatiles from the catalytic pyrolysis with the addition of phosphoric acid of birch wood and lignocelluloses obtained by birch wood hydrothermal treatment. Py-GC/MS/FID method was used to evaluate the contents of the main products. Lignocelluloses were found to be a more promising precursor to obtain levoglucosenone with lesser content of furfural: For birch wood and lignocelluloses hydrothermally treated at 150 and 180 °C, Py-GC/MS/FID revealed levoglucosenone yields of 12.83, 16.94 and 21.08%, correspondingly (at 5% phosphoric acid addition). When birch wood impregnated with 5% H 3 PO 4 was pyrolized in the laboratory screw-type reactor, the levoglucosenone yield was 6.5%. The composition and content of volatiles formed in analytical pyrolysis, bio-oil and its chloroform extract were compared. Extraction of bio-oil with chloroform and consequent distillation resulted in fractions containing 79.14% of levoglucosenone.
This paper presents research into the preparation of rigid polyurethane foams with bio-polyols from rapeseed and tall oil. Rigid polyurethane foams were designed with a cryogenic insulation application for aerospace in mind. The polyurethane systems containing non-renewable diethylene glycol (DEG) were modified by replacing it with rapeseed oil-based low functional polyol (LF), obtained by a two-step reaction of epoxidation and oxirane ring opening with 1-hexanol. It was observed that as the proportion of the LF polyol in the polyurethane system increased, so too did the apparent density of the foam material. An increase in the value of the thermal conductivity coefficient was associated with an increase in the value of apparent density. Mechanical tests showed that the rigid polyurethane foam had higher compressive strength at cryogenic temperatures compared with the values obtained at room temperature. The adhesion test indicated that the foams subjected to cryo-shock obtained similar values of adhesion strength to the materials that were not subjected to this test. The results obtained were higher than 0.1 MPa, which is a favourable value for foam materials in low-temperature applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.