Presence of a small abdominal aortic aneurysm (AAA) often presents a difficult clinical dilemma--a reparative operation with its inherent risks versus monitoring the growth of the aneurysm, with the accompanying risk of rupture. The risk of rupture is conventionally believed to be a function of the AAA bulge diameter. In this work, we hypothesized that the risk of rupture depends on AAA shape. Because rupture is inevitably linked to stress, membrane theory was used to predict the stresses in the walls of an idealized AAA, using a model which was axisymmetric and fusiform, with the ends merged into straight opened-ended tubes. When the stresses for many different shapes of model AAAs were examined, a number of conclusions became evident: (i) maximum hoop stress typically exceeded maximum meridional stress by a factor of 2 to 3 (ii) the shape of an AAA had a small effect on the meridional stresses and a rather dramatic effect on the hoop stresses, (iii) maximum stress typically occurred near the inflection point of a curve drawn coincident with the AAA wall, and (iv) the maximum stress was a function--not of the bulge diameter---but of the curvatures (i.e. shape) of the AAA wall. This last result suggested that rupture probability should be based on wall curvatures, not on AAA bulge diameter. Because curvatures are not much harder to measure than bulge diameter, this concept may be useful in a clinical setting in order to improve prediction of the likelihood of AAA rupture.
Steady flow in abdominal aortic aneurysm models has been examined for four aneurysm sizes over Reynolds numbers from 500 to 2600. The Reynolds number is based on entrance tube diameter, and the inlet condition is fully developed flow. Experimental and numerical methods have been used to determine: (i) the overall features of the flow, (ii) the stresses on the aneurysm walls in laminar flow, and (iii) the onset and characteristics of turbulent flow. The laminar flow field is characterized by a jet of fluid (passing directly through the aneurysm) surrounded by a recirculating vortex. The wall shear stress magnitude in the recirculation zone is about ten times less than in the entrance tube. Both wall shear stress and wall normal stress profiles exhibit large magnitude peaks near the reattachment point at the distal end of the aneurysm. The onset of turbulence in the model is intermittent for 2000 < Re < 2500. The results demonstrate that a slug of turbulence in the entrance tube grows much more rapidly in the aneurysm than in a corresponding length of uniform cross section pipe. When turbulence is present in the aneurysm the recirculation zone breaks down and the wall shear stress returns to a magnitude comparable to that in the entrance tube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.