The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right‐lateral strike‐slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high‐resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ∼297 ± 9 m of right‐lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic 10Be and 36Cl geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/−20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on 36Cl depth profiles is 63 ± 8 ka. Combining the offset measurement with the cosmogenic 10Be date yields a geologic fault slip rate of 4.2 +1.9/−1.1 mm yr−1, whereas the 36Cl data indicate 4.7 +0.9/−0.6 mm yr−1 of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ∼8.5 to 10 mm yr−1. This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant.
It is valuable to construct likelihood functions that rigorously incorporate measurement errors and annual peak discharge, historical, and paleohydrologic bound information in Bayesian flood frequency analyses. Estimates of primary posterior modes for common three‐parameter frequency distributions are constructed using simulated annealing and the simplex method. Parameter and flood frequency probability intervals are calculated directly by systematic parameter space integration. Bayesian flood frequency analyses with annual peak discharge, historical, and paleohydrologic bound data for the Santa Ynez River, California, and the Big Lost River, Idaho, demonstrate that paleohydrologic bounds reduce quantile biases by placing large observed peak discharges in their proper long‐term contexts and substantially narrow peak discharge confidence intervals when estimating floods with low exceedance probabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.