This Technical Note addresses the workflow for the production of hydraulic scale models using a Computer Numerically Controlled (CNC) production technique and investigates the possibilities to accurately reproduce topographical roughness features. Focusing on the construction of three scale models of unlined rock blasted tunnels, their accuracy is evaluated based on the comparison of differences between scaled prototype point clouds obtained by terrestrial laser scanning, spatially filtered meshes that served as input for the milling of the models, and digital twins of the constructed models that were created by Structure from Motion photogrammetry. The direct comparison between the point clouds and meshes as well as the comparison of derived statistical parameters show that the models could be reproduced with a high degree of accuracy. Observed deviations between the point clouds of the milled models and the milling meshes, as well as the scaled original point cloud, are identified and discussed in light of the production technique and the accuracy of the applied methods for the comparison.
The friction loss in a part of the rock-blasted unlined tunnel of the Litjfossen hydropower plant in Norway was determined from experimental and numerical studies. Remote sensing data from the prototype tunnel provided the input data for both the numerical model and the construction of a 1:15 scale model with an innovative milling approach. The numerical simulations were based on the solution of the Reynolds-averaged Navier–Stokes equations using the CFD program OpenFoam. Head loss measurements in the scale model were carried out by means of pressure measurements for a range of discharges and were compared against the results of the numerical model. The measured data were used to determine the Darcy–Weisbach and Manning friction factors of the investigated tunnel reach. The high-resolution remote sensing data were also used to test the applicability of existing approaches to determine the friction factor in unlined rock blasted tunnels. The results of the study show the usefulness of the chosen hybrid approach of experimental investigations and numerical simulations and that existing approaches for the determination of head losses in unlined tunnels need to be further refined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.