A prototype disc stack centrifuge was tested for the separation of mammalian cell cultures from 80- and 2000-L fermentations. The clarification capacity for mammalian cells was excellent, but some smaller particles remained in the supernatant and reduced its usefulness for downstream processing. In order to identify the source of such particle formation, several parameters were assessed and minimum particle size for separation was calculated. An analysis of particle distribution was performed. Temperature and pressure effects inside the centrifuge bowl were measured. Some modifications of mechanical engineering can be suggested for the improvement of the use of standard disc stack centrifuges for mammalian cells. (c) 1995 John Wiley & Sons, Inc.
Animal cells from 80-L and 2000-L fed batch fermentations were removed by a prototype disc stack centrifuge in order to achieve a fast and reliable separation of solids from large quantities of cell culture fluids. The clarification capacity was excellent for animal cells but particles remained in the liquid phase and affected further downstream processing of the cell-free harvest fluid. No significant loss of product was observed. A number of parameters were monitored to optimize process conditions for use with animal cells.
Separation of product from secreting mammalian cells in the culture both means the transition from product generation to product isolation. This interface within a biotech production process has to perform a proper solid/liquid phase separation of the cell suspension to make the product containing fluid amenable for further purification. These subsequent steps require fluid with low occurrence of contaminants in order to function properly. The goal of this study was to evaluate some economic and fast cell separation methods for the preparation of a product fluid ready for use in further ultrafiltration and chromatographic processes. We have performed experiments to test the usefulness of disc stack centrifuges and tangential flow microfiltration units at large scale. Both systems revealed outstanding prospects with regard to throughput and scale up properties. However, the centrificgation did not lead to a fluid sufficiently free of particles for direct ultrafiltration or chromatography. Thus, an additional filtration step was necessary. On the other hand microfiltration led to an acceptable quality of process fluid directly. By optimisation of process parameters an effective, reproducible and robust cell separation can be obtained. However, our experience has been that such optimal conditions are somewhat specific for a narrow range. Thus, even the equipment functioning well with one type of cell would possibly not perform as well with another cell or even with the same cell under conditions slightly different to the usual situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.