Human immunodeficiency virus type-1 (HIV-1) integrase is one of the three virally encoded enzymes required for replication and therefore a rational target for chemotherapeutic intervention in the treatment of HIV-1 infection. We report here the discovery of Raltegravir, the first HIV-integrase inhibitor approved by FDA for the treatment of HIV infection. It derives from the evolution of 5,6-dihydroxypyrimidine-4-carboxamides and N-methyl-4-hydroxypyrimidinone-carboxamides, which exhibited potent inhibition of the HIV-integrase catalyzed strand transfer process. Structural modifications on these molecules were made in order to maximize potency as HIV-integrase inhibitors against the wild type virus, a selection of mutants, and optimize the selectivity, pharmacokinetic, and metabolic profiles in preclinical species. The good profile of Raltegravir has enabled its progression toward the end of phase III clinical trials for the treatment of HIV-1 infection and culminated with the FDA approval as the first HIV-integrase inhibitor for the treatment of HIV-1 infection.
Mutations reducing the functional activity of leptin, the leptin receptor, alpha-melanocyte stimulating hormones (alpha-MSH) and the melanocortin-4 receptor (Mc4r) all lead to obesity in mammals. Moreover, mutant mice that ectopically express either agouti (Ay/a mice) or agouti-related protein (Agrp), antagonists of melanocortin signalling, become obese. These data suggest that alpha-MSH signalling transduced by Mc4r tonically inhibits feeding; however, it is not known to what extent this pathway mediates leptin signalling. We show here that Mc4r-deficient (Mc4r-/-) mice do not respond to the anorectic actions of MTII, an MSH-like agonist, suggesting that alpha-MSH inhibits feeding primarily by activating Mc4r. Obese Mc4r-/-mice do not respond significantly to the inhibitory effects of leptin on feeding, whereas non-obese Mc4r-/- mice do. These data demonstrate that melanocortin signalling transduced by Mc4r is not an exclusive target of leptin action and that factors resulting from obesity contribute to leptin resistance. Leptin resistance of obese Mc4r-/- mice does not prevent their response to the anorectic actions of ciliary neurotrophic factor (CNTF), corticotropin releasing factor (CRF), or urocortin; or the orexigenic actions of neuropeptide Y (NPY) or peptide YY (PYY), indicating that these neuromodulators act independently or downstream of Mc4r signalling.
We show that an electric treatment in the form of high-frequency, low-voltage electric pulses can increase more than 100-fold the production and secretion of a recombinant protein from mouse skeletal muscle. Therapeutical erythopoietin (EPO) levels were achieved in mice with a single injection of as little as 1 g of plasmid DNA, and the increase in hematocrit after EPO production was stable and long-lasting. Pharmacological regulation through a tetracycline-inducible promoter allowed regulation of serum EPO and hematocrit levels. Tissue damage after stimulation was transient. The method described thus provides a potentially safe and low-cost treatment for serum protein deficiencies.Genes can be transferred into skeletal muscle cells of rodents and primates by intramuscular injection of plasmid DNA, and the resulting gene expression has been reported to last as long as several months (1, 2). Similarly, various viral vectors such as adenoviral, retroviral, and AAV-based vectors (3), have been used to transduce myofibers in vivo. The i.m. injection of plasmid DNA, however, has several advantages over viral vectors. First, plasmid DNA vectors are easier to construct and can be prepared as pharmaceutical-grade solutions (4) without the risk of contamination with wild-type infectious particles. Second, previous infection by wild-type adenovirus or AAV may induce a neutralizing antibody response that could preclude administration of the recombinant virus. In contrast, anti-DNA antibodies have never been detected in experiments of muscle DNA injection (2), therefore it is possible to readminister plasmid DNA by i.m. injection if repeated therapy or escalation is required.Despite the promise of i.m. injection of plasmid vectors for treating serum protein deficiencies, several important issues remain to be addressed before this approach becomes feasible for human gene therapy. The potential clinical usefulness of direct gene transfer to muscle of plasmid DNA is in fact limited by the low and highly variable level of gene expression (1, 2, 5, 6). Therefore, although DNA injection is potentially very powerful as a vaccination method because a low level of gene expression is sufficient to trigger immunoresponses, it is necessary to increase the efficiency of DNA uptake after i.m. injection of plasmid vectors before using this technique as a standard gene correction procedure.One of the most efficient methods implemented to achieve gene transfer and expression in mammalian cells is based on electric pulses (7). Electroporation has been used to introduce foreign DNA in different cell types (7), but it has also recently met with some success in in vivo applications. Gene transfer by electrical permeabilization has been obtained in skin (8, 9), corneal endothelium (10), melanoma (11), brain (12), liver, (13) and muscle (14) of experimental animals.We have shown previously that electropermeabilization can increase severalfold the uptake by rat muscle of a plasmid encoding the Escherichia coli lacZ gene (15). In this study...
Receptor subunits for the neurocytokine ciliary neurotrophic factor (CNTF) share sequence similarity with the receptor for leptin, an adipocyte-derived cytokine involved in body weight homeostasis. We report here that CNTF and leptin activate a similar pattern of STAT factors in neuronal cells, and that mRNAs for CNTF receptor subunits, similarly to the mRNA of leptin receptor, are localized in mouse hypothalamic nuclei involved in the regulation of energy balance. Systemic administration of CNTF or leptin led to rapid induction of the tis-11 primary response gene in the arcuate nucleus, suggesting that both cytokines can signal to hypothalamic satiety centers. Consistent with this idea, CNTF treatment of ob͞ob mice, which lack functional leptin, was found to reduce the adiposity, hyperphagia, and hyperinsulinemia associated with leptin deficiency. Unlike leptin, CNTF also reduced obesity-related phenotypes in db͞db mice, which lack functional leptin receptor, and in mice with diet-induced obesity, which are partially resistant to the actions of leptin. The identification of a cytokine-mediated anti-obesity mechanism that acts independently of the leptin system may help to develop strategies for the treatment of obesity associated with leptin resistance.
The existence of a third tachykinin receptor (SP‐N) in the mammalian nervous system was demonstrated by development of highly selective agonists. Systematic N‐methylation of individual peptide bonds in the C‐terminal hexapeptide of substance P gave rise to agonists which specifically act on different receptor subtypes. The most selective analog of this series, succinyl‐[Asp6,Me‐Phe8]SP6‐11, elicits half‐maximal contraction of the guinea pig ileum through the neuronal SP‐N receptor at a concentration of 0.5 nM. At least 60,000‐fold higher concentrations of this peptide are required to stimulate the other two tachykinin receptors (SP‐P and SP‐E). The action of selective SP‐N agonists in the guinea pig ileum is antagonized by opioid peptides, suggesting a functional counteraction between opiate and SP‐N receptors. These results indicate that the tachykinin receptors are distinct entities which may mediate different physiological functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.