Defects in long-range regulatory elements have recently emerged as previously underestimated factors in the genesis of human congenital disorders. Léri-Weill dyschondrosteosis is a dominant skeletal malformation syndrome caused by mutations in the short stature homeobox gene SHOX. We have analysed four families with Léri-Weill dyschondrosteosis with deletions in the pseudoautosomal region but still with an intact SHOX coding region. Using fluorescence in situ hybridization and single nucleotide polymorphism studies, we identified an interval of approximately 200 kb that was deleted in all tested affected family members but retained in the unaffected members and in 100 control individuals. Comparative genomic analysis of this interval revealed eight highly conserved non-genic elements between 48 and 215 kb downstream of the SHOX gene. As mice do not have a Shox gene, we analysed the enhancer potential in chicken embryos using a green fluorescent protein reporter construct driven by the beta-globin promoter, by in ovo electroporation of the limb bud. We observed cis-regulatory activity in three of the eight non-genic elements in the developing limbs arguing for an extensive control region of this gene. These findings are consistent with the idea that the deleted region in the affected families contains several distinct elements that regulate Shox expression in the developing limb. Furthermore, the deletion of these elements in humans generates a phenotype apparently undistinguishable to those patients identified with mutations in the SHOX coding region and, for the first time, demonstrates the potential of an in vivo assay in chicken to monitor putative enhancer activity in relation to human disease.
Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors. We made use of this dichotomy to establish a radiomic signature predicting tumor regression after pseudoprogression induced by ICB therapy based on serial magnetic resonance imaging. We provide evidence that macrophage-driven ICB resistance is established by CD4 T cell suppression and T reg expansion in the tumor microenvironment via the PD-L1/PD-1/CD80 axis. These findings uncover an unexpected heterogeneity of response to ICB in strictly syngeneic tumors and provide a rationale for targeting PD-L1expressing tumor-associated macrophages to overcome resistance to ICB.
Background:Mutations and deletions of the homeobox transcription factor gene SHOX are known to cause short stature. The authors have analysed SHOX enhancer regions in a large cohort of short stature patients to study the importance of regulatory regions in developmentally relevant genes like SHOX.Methods:The authors tested for the presence of copy number variations in the pseudoautosomal region of the sex chromosomes in 735 individuals with idiopathic short stature and compared the results to 58 cases with Leri–Weill syndrome and 100 normal height controls, using fluorescence in situ hybridisation (FISH), single nucleotide polymorphism (SNP), microsatellites, and multiplex ligand dependent probe amplification (MLPA) analysis.Results:A total of 31/735 (4.2%) microdeletions were identified in the pseudoautosomal region in patients with idiopathic short stature; eight of these microdeletions (8/31; 26%) involved only enhancer sequences residing a considerable distance away from the gene. In 58 Leri–Weill syndrome patients, a total of 29 microdeletions were identified; almost half of these (13/29; 45%) involve enhancer sequences and leave the SHOX gene intact. These deletions were absent in 100 control persons.Conclusion:The authors conclude that enhancer deletions in the SHOX gene region are a relatively frequent cause of growth failure in patients with idiopathic short stature and Leri–Weill syndrome. The data highlights the growing recognition that regulatory sequences are of crucial importance in the genome when diagnosing and understanding the aetiology of disease.
Irritable bowel syndrome (IBS) is a gut-brain disorder involving alterations in intestinal sensitivity and motility. Serotonin 5-HT4 receptors are promising candidates in IBS pathophysiology since they regulate gut motor function and stool consistency, and targeted 5-HT4R selective drug intervention has been proven beneficial in subgroups of patients. We identified a single nucleotide polymorphism (SNP) (rs201253747) c.*61 T > C within the 5-HT4 receptor gene HTR4 to be predominantly present in diarrhoea-IBS patients (IBS-D). It affects a binding site for the miR-16 family and miR-103/miR-107 within the isoforms HTR4b/i and putatively impairs HTR4 expression. Subsequent miRNA-profiling revealed downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients correlating with symptoms. In vitro assays confirmed expression regulation via three 3′UTR binding sites. The novel isoform HTR4b_2 lacking two of the three miRNA binding sites escapes miR-16/103/107 regulation in SNP carriers. We provide the first evidence that HTR4 expression is fine-tuned by miRNAs, and that this regulation is impaired either by the SNP c.*61 T > C or by diminished levels of miR-16 and miR-103 suggesting that HTR4 might be involved in the development of IBS-D.
The interaction between the mammalian host and its resident gut microbiota is known to license adaptive immune responses. Nutritional constituents strongly influence composition and functional properties of the intestinal microbial communities. Here, we report that omission of a single essential amino acid - tryptophan – from the diet abrogates CNS autoimmunity in a mouse model of multiple sclerosis. Dietary tryptophan restriction results in impaired encephalitogenic T cell responses and is accompanied by a mild intestinal inflammatory response and a profound phenotypic shift of gut microbiota. Protective effects of dietary tryptophan restriction are abrogated in germ-free mice, but are independent of canonical host sensors of intracellular tryptophan metabolites. We conclude that dietary tryptophan restriction alters metabolic properties of gut microbiota, which in turn have an impact on encephalitogenic T cell responses. This link between gut microbiota, dietary tryptophan and adaptive immunity may help to develop therapeutic strategies for protection from autoimmune neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.