Poor aqueous solubility of active compounds is a major issue in today’s drug delivery. In this study, the smartFilm technology was exploited to improve the dermal penetration efficacy of a poorly soluble active compound (curcumin). Results were compared to the dermal penetration efficacy of curcumin from curcumin bulk suspensions and nanocrystals, respectively. The smartFilms enabled an effective dermal and transdermal penetration of curcumin, whereas curcumin bulk- and nanosuspensions were less efficient when the curcumin content was similar to the curcumin content in the smartFilms. Interestingly, it was found that increasing numbers of The effect is caused by an aqueous meniscus that is created between particle and skin if the dispersion medium evaporates. The connecting liquid meniscus causes a local swelling of the curcumin particles within the suspensions increased the passive dermal penetration of curcumin. stratum corneum and maintains a high local concentration gradient between drug particles and skin. This leads to a high local passive dermal penetration of curcumin. The findings suggest a new dermal penetration mechanism for active compounds from nanoparticulate drug delivery systems, which can be the base for the development of topical drug products with improved penetration efficacy in the future.
Mitochondrial dysfunction represents a hallmark of both brain aging and age-related neurodegenerative disorders including Alzheimer disease (AD). AD-related mitochondrial dysfunction is characterized by an impaired electron transport chain (ETC), subsequent decreased adenosine triphoshpate (ATP) levels, and elevated generation of reactive oxygen species (ROS). The bioactive citrus flavanone hesperetin (Hst) is known to modulate inflammatory response, to function as an antioxidant, and to provide neuroprotective properties. The efficacy in improving mitochondrial dysfunction of Hst nanocrystals (HstN) with increased bioavailability has not yet been investigated. Human SH-SY5Y cells harboring neuronal amyloid precursor protein (APP695) acted as a model for the initial phase of AD. MOCK-transfected cells served as controls. The energetic metabolite ATP was determined using a luciferase-catalyzed bioluminescence assay. The activity of mitochondrial respiration chain complexes was assessed by high-resolution respirometry using a Clarke electrode. Expression levels of mitochondrial respiratory chain complex genes were determined using quantitative real-time polymerase chain reaction (qRT-PCR). The levels of amyloid β-protein (Aβ1-40) were measured using homogeneous time-resolved fluorescence (HTRF). ROS levels, peroxidase activity, and cytochrome c activity were determined using a fluorescence assay. Compared to pure Hst dissolved in ethanol (HstP), SH-SY5Y-APP695 cells incubated with HstN resulted in significantly reduced mitochondrial dysfunction: ATP levels and respiratory chain complex activity significantly increased. Gene expression levels of RCC I, IV, and V were significantly upregulated. In comparison, the effects of HstN on SY5Y-MOCK control cells were relatively small. Pure Hst dissolved in ethanol (HstP) had almost no effect on both cell lines. Neither HstN nor HstP led to significant changes in Aβ1-40 levels. HstN and HstP were both shown to lower peroxidase activity significantly. Furthermore, HstN significantly reduced cytochrome c activity, whereas HstP had a significant effect on reducing ROS in SH-SY5Y-APP695 cells. Thus, it seems that the mechanisms involved may not be linked to altered Aβ production. Nanoflavonoids such as HstN have the potential to prevent mitochondria against dysfunction. Compared to its pure form, HstN showed a greater effect in combatting mitochondrial dysfunction. Further studies should evaluate whether HstN protects against age-related mitochondrial dysfunction and thus may contribute to late-onset AD.
(1) Background: The ex vivo porcine ear model is often used for the determination of the dermal penetration efficacy of chemical compounds. This study investigated the influence of the post-slaughter storage time of porcine ears on the dermal penetration efficacy of chemical compounds. (2) Methods: Six different formulations (curcumin and different fluorescent dyes in different vehicles and/or nanocarriers) were tested on ears that were (i) freshly obtained, (ii) stored for 24 or 48 h at 4 °C after slaughter before use and (iii) freshly frozen and defrosted 12 h before use. (3) Results: Results showed that porcine ears undergo post-mortem changes. The changes can be linked to rigor mortis and all other well-described phenomena that occur with carcasses after slaughter. The post-mortem changes modify the skin properties of the ears and affect the penetration efficacy. The onset of rigor mortis causes a decrease in the water-holding capacity of the ears, which leads to reduced penetration of chemical compounds. The water-holding capacity increases once the rigor is released and results in an increased penetration efficacy for chemical compounds. Despite different absolute penetration values, no differences in the ranking of penetration efficacies between the different formulations were observed between the differently aged ears. (4) Conclusions: All different types of ears can be regarded to be suitable for dermal penetration testing of chemical compounds. The transepidermal water loss (TEWL) and/or skin hydration of the ears were not correlated with the ex vivo penetration efficacy because both an impaired skin barrier and rigor mortis cause elevated skin hydration and TEWL values but an opposite penetration efficacy. Other additional values (for example, pH and/or autofluorescence of the skin) should, therefore, be used to select suitable and non-suitable skin areas for ex vivo penetration testing. Finally, data from this study confirmed that smartFilms and nanostructured lipid carriers (NLC) represent superior formulation strategies for efficient dermal and transdermal delivery of curcumin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.