A new UHV spectroscopic X-ray photoelectron emission and low energy electron microscope is presently under construction for the installation at the PM-6 soft X-ray undulator beamline at BESSY II. Using a combination of a sophisticated magnetic beam splitter and an electrostatic tetrode mirror, the spherical and chromatic aberrations of the objective lens are corrected and thus the lateral resolution and sensitivity of the instrument improved. In addition a corrected imaging energy filter (a so-called omega filter) allows high spectral resolution (∆E = 0.1 eV) in the photoemission modes and background suppression in LEEM and small-spot LEED modes. The theoretical prediction for the lateral resolution is 5Å; a realistic goal is about 2 nm. Thus, a variety of electron spectroscopies (XAS, XPS, UPS, XAES) and electron diffraction (LEED, LEEM) or reflection techniques (MEM) will be available with spatial resolution unreached so far.
This paper presents experimental data on the bonding of and NiO(100) and compares them with theoretical results. In the case of CO and NO on NiO(100) we find that the bonding energies obtained for the vacuum-cleaved single crystals agree well with results of recent studies on thin NiO(100) films grown by oxidation of Ni(100) whereas they are at variance with theoretical results. On the other hand, for CO on MgO(100) the experimental data fit well to recent theoretical studies while they contradict studies of adsorption on MgO(100) films grown on Mo(100). The experimentally determined values for the adsorption energies are 0.30 and 0.57 eV for adsorption of CO and NO on NiO(100), respectively, and 0.14 and 0.22 eV for adsorption on MgO(100). We suggest that the stronger bonding to NiO(100) as compared to MgO(100) is due to the influence of the 3d electrons of NiO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.