Frailty models are used in the survival analysis to account for the unobserved heterogeneityin individual risks to disease and death. To analyze the bivariate data on relatedsurvival times (e.g. matched pairs experiments, twin or family data), the shared frailtymodels were suggested. In this manuscript, we propose a new mixture shared inverse Gaussian frailty model based on modified Weibull as baseline distribution. The Bayesian approach of Markov Chain Monte Carlo technique is employed to estimate the parameters involved in the models. In addition, a simulation study is performed to compare the true values of the parameters with the estimated values. A comparison with the existing model was done by using Bayesian comparison techniques. A better model for infectious disease data related to kidney infection is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.