The paper presents a new method for in site discharge estimation in pressured pipes. The method consists in using the water hammer equations solved with the method of characteristics with an unsteady friction factor model. The differential pressure head variation measured during a complete valve closure is used to derive the initial flow rate, similarly to the pressure-time (Gibson) method. The method is validated with a numerical experiment, and tested with experimental laboratory measurements. The results show that the proposed method can reduce the discharge estimation error by 0.6% compared to the standard pressure-time (Gibson) method for the flow rate investigation.
The aim of this study is to develop a reliable numerical model that provides additional information to experimental measurements and contributes to a better exploitation of hydraulic turbines during transient operation. The paper presents a numerical analysis of the flow inside a Kaplan turbine model operated at a fixed runner blade angle during load variation from the best efficiency point (BEP) to part load (PL) operation. A mesh displacement is defined in order to model the closure of the guide vanes. Two different types of inlet boundary conditions are tested for the transient numerical simulations: linear flow rate variation (InletFlow) and constant total pressure (InletTotalPressure). A time step analysis is performed and the influence of the time discretization over the fluctuating quantities is discussed. Velocity measurements at the corresponding operating points are available to validate the simulation. Spectrogram plots of the pressure signals show the times of appearance of the plunging and rotating modes of the rotating vortex rope (RVR) and the stagnation region developed around the centerline of the draft tube is captured.
The role of hydropower has become increasingly essential following the introduction of intermittent renewable energies. Quickly regulating power is needed, and the transient operations of hydropower plants have consequently become more frequent. Large pressure fluctuations occur during transient operations, leading to the premature fatigue and wear of hydraulic turbines. Investigations of the transient flow phenomena developed in small-scale turbine models are useful and accessible but limited. On the other hand, experimental and numerical studies of full-scale large turbines are challenging due to production losses, large scales, high Reynolds numbers, and computational demands. In the present work, the operation of a 10 MW Kaplan prototype turbine was modelled for two operating points on a propeller curve corresponding to the best efficiency point and part-load conditions. First, an analysis of the possible means of reducing the model complexity is presented. The influence of the boundary conditions, runner blade clearance, blade geometry and mesh size on the numerical results is discussed. Secondly, the results of the numerical simulations are presented and compared to experimental measurements performed on the prototype in order to validate the numerical model. The mean torque and pressure values were reasonably predicted at both operating points with the simplified model. An analysis of the pressure fluctuations at part load demonstrated that the numerical simulation captured the rotating vortex rope developed in the draft tube. The frequencies of the rotating and plunging components of the rotating vortex were accurately captured, but the amplitudes were underestimated compared to the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.