We propose a new transfer learning algorithm between tasks with different dynamics. The proposed algorithm solves an Imitation from Observation problem (IfO) to ground the source environment to the target task before learning an optimal policy in the grounded environment. The learned policy is deployed in the target task without additional training. A particular feature of our algorithm is the employment of multiple rollout policies during training with a goal to ground the environment more globally; hence, it is named as Multi-Policy Grounding (MPG). The quality of final policy is further enhanced via ensemble policy learning. We demonstrate the superiority of the proposed algorithm analytically and numerically. Numerical studies show that the proposed multi-policy approach allows comparable grounding with single policy approach with a fraction of target samples, hence the algorithm is able to maintain the quality of obtained policy even as the number of interactions with the target environment becomes extremely small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.