In this paper, we present a new method for classification of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) method. The intrinsic mode functions (IMFs) generated by EMD method can be considered as a set of amplitude and frequency modulated (AM-FM) signals. The Hilbert transformation of IMFs provides an analytic signal representation of the IMFs. The two bandwidths, namely amplitude modulation bandwidth (B(AM)) and frequency modulation bandwidth (B(FM)), computed from the analytic IMFs, have been used as an input to least squares support vector machine (LS-SVM) for classifying seizure and non-seizure EEG signals. The proposed method for classification of EEG signals based on the bandwidth features (B(A M) and B (FM)) and the LS-SVM has provided better classification accuracy than the method of Liang et. al [20]. The experimental results with the recorded EEG signals from a published dataset are included to show the effectiveness of the proposed method for EEG signal classification.
The brain is a complex structure made up of interconnected neurons, and its electrical activities can be evaluated using electroencephalogram (EEG) signals. The characteristics of the brain area affected by partial epilepsy can be studied using focal and non-focal EEG signals. In this work, a method for the classification of focal and non-focal EEG signals is presented using entropy measures. These entropy measures can be useful in assessing the nonlinear interrelation and complexity of focal and non-focal EEG signals. These EEG signals are first decomposed using the empirical mode decomposition (EMD) method to extract intrinsic mode functions (IMFs). The entropy features, namely, average Shannon entropy (ShEn Avg ), average Renyi's entropy (RenEn Avg ), average approximate entropy (ApEn Avg ), average sample entropy (SpEn Avg ) and average phase entropies (S1 Avg and S2 Avg ), are computed from different IMFs of focal and non-focal EEG signals. These entropies are used as the input feature set for the least squares support vector machine (LS-SVM) classifier to classify into focal and non-focal EEG signals. Experimental results show that our proposed method is able to differentiate the focal and non-focal EEG signals with an average classification accuracy of 87% correct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.