Electrostatic charges in gas-solid fluidized beds are known to influence the bed dynamics, bubble shape and size, particle agglomeration, segregation and entrainment. In practice, accumulation of electrostatic charges in fluidized beds can lead to operational issues. The present work
Gas-solid flows have numerous industrial applications and are also found in natural processes. They are involved in industries like petrochemical, polymer, pharmaceutical, food and coal. Fluidization is a commonly used gas-solid operation and is widely used in production of polyethylene. Polyethylene is one of the most widely used thermoplastics. Over 60 million tons are produced worldwide every year by both gas-phase and liquid-phase processes. Gas-phase processes are more advantageous and use fluidized-bed reactors (e.g., UNIPOLTM PE PROCESS and Innovene process) for the polymerization reactions. In this work a chemical-reaction-engineering model incorporating a given catalyst size distribution and polymerization kinetics along with the quadrature method of moments is used to predict the final polymer size distribution and temperature. An Eulerian-Eulerian multi-fluid model based on the kinetic theory of granular flow is used to solve the fluidized-bed dynamics and predict behavior such as particle segregation, slug flow and other non-ideal phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.