Agriculture provides for the most basic needs of humankind: food and fiber. The introduction of new farming techniques in the past century (e.g., during the Green Revolution) has helped agriculture keep pace with growing demands for food and other agricultural products. However, further increases in food demand, a growing population, and rising income levels are likely to put additional strain on natural resources. With growing recognition of the negative impacts of agriculture on the environment, new techniques and approaches should be able to meet future food demands while maintaining or reducing the environmental footprint of agriculture. Emerging technologies, such as geospatial technologies, Internet of Things (IoT), Big Data analysis, and artificial intelligence (AI), could be utilized to make informed management decisions aimed to increase crop production. Precision agriculture (PA) entails the application of a suite of such technologies to optimize agricultural inputs to increase agricultural production and reduce input losses. Use of remote sensing technologies for PA has increased rapidly during the past few decades. The unprecedented availability of high resolution (spatial, spectral and temporal) satellite images has promoted the use of remote sensing in many PA applications, including crop monitoring, irrigation management, nutrient application, disease and pest management, and yield prediction. In this paper, we provide an overview of remote sensing systems, techniques, and vegetation indices along with their recent (2015–2020) applications in PA. Remote-sensing-based PA technologies such as variable fertilizer rate application technology in Green Seeker and Crop Circle have already been incorporated in commercial agriculture. Use of unmanned aerial vehicles (UAVs) has increased tremendously during the last decade due to their cost-effectiveness and flexibility in obtaining the high-resolution (cm-scale) images needed for PA applications. At the same time, the availability of a large amount of satellite data has prompted researchers to explore advanced data storage and processing techniques such as cloud computing and machine learning. Given the complexity of image processing and the amount of technical knowledge and expertise needed, it is critical to explore and develop a simple yet reliable workflow for the real-time application of remote sensing in PA. Development of accurate yet easy to use, user-friendly systems is likely to result in broader adoption of remote sensing technologies in commercial and non-commercial PA applications.
Landslides are triggered by earthquakes, volcanoes, floods, and heavy continuous rainfall. For most types of slope failure, soil moisture plays a critical role because increased pore water pressure reduces the soil strength and increases stress. However, in-situ soil moisture profiles are rarely measured. To establish the soil moisture and landslide relationship, a qualitative comparison among soil moisture derived from AMSR-E, precipitation from TRMM and major landslide events was conducted. This study shows that it is possible to estimate antecedent soil moisture conditions using AMSR-E and TRMM satellite data in landslide prone areas. AMSR-E data show distinct annual patterns of soil moisture that reflect observed rainfall patterns from TRMM. Results also show enhanced AMSR-E soil moisture and TRMM rainfall prior to major landslide events in landslide prone regions of California, U.S.; Leyte, Philippines; and Dhading, Nepal.
Abstract:In this paper, three satellite derived precipitation datasets (TRMM, CMORPH, PERSIANN) are used to drive the Hillslope River Routing (HRR) model in the Congo Basin. The precipitation data are compared spatially and temporally in two forms: (1) precipitation magnitudes, and (2) resulting streamflow and water storages. Simulated streamflow is assessed using historical monthly discharge data from in situ stream gauges and recent stage data based on water surface elevations derived from ENVISAT radar altimetry data. Simulated total water storage is assessed using monthly storage change values derived from GRACE data. The results show that the three precipitation datasets vary significantly in terms of magnitudes but generally produce a reasonable hydrograph throughout much of the basin, with the exception of the equatorial regions of the watershed. The satellite datasets provide unreasonably high values for specific periods (e.g. all three in Oct-Nov; only CMORPH and PERSIANN in Mar-Apr) in the equatorial regions. Overall, TRMM (3B42) provides the best spatial and temporal distributions and magnitudes or rainfall based on the assessment measures used here. Both CMORPH and PERSIANN tend to overestimate magnitudes, especially in the equatorial regions of the Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.