A sliding mode voltage control (SMVC) based double input buck-boost converter for low voltage solar/wind applications, is proposed in this paper. The proposed double input converter is suitable to maintain output voltage constant at DC bus, irrespective of interruption in availability of solar/wind sources individually or simultaneously both due to climatic conditions rather than individual converter for each source. Controller used is PID-type-PWM based SMVC which is one of the robust controllers and suitable for wind/solar power applications. Modes of operation of converter are described in detail and sim ulation experimental results are presented. Keywords-solar PV and wind power characteristics; Double input Buck-Boost converter; PID-type-PWM-based Sliding mode voltage controller (SMVC).
A hybrid scheme for transmission line protection (HSTLP) using the Stockwell transform (ST), Wigner distribution function (WDF), and alienation coefficient (ACF) is designed. Current signals are analyzed using the ST, WDF, and ACF to compute the Stockwell fault index (SFI), Wigner fault index (WFI), and alienation coefficient fault index (ACFI), respectively. These fault indexes are used to derive a hybrid signal processing fault index (HSPFI), which is implemented for the detection of transmission line fault events. The peak magnitude of HSPFI is compared with a preset threshold magnitude (TH) to identify the fault. The statistical formulation is proposed for fault location on the power transmission line. Fault classification is achieved using the number of faulty phases. A hybrid ground fault index (HGFI) is used to recognize the involvement of the ground during the fault event. This HGFI is determined by processing zero sequence current using ST and WDF. The performance of algorithm is tested by various case studies for fault impedance variation, variable sampling frequency, fault incidence angle variation, reverse power flow on transmission line, highly loaded line, different fault locations online, and noisy conditions. The algorithm is also validated to detect a fault on a practical transmission line of large area utility grid of Rajasthan Rajya Vidyut Prasaran Nigam Limited (RVPN) in India. The algorithm performs better than the Hilbert–Huang transform (HHT)-based protection scheme and wavelet transform (WT)-based protection scheme available in the literature in terms of mean error of fault location, fault location accuracy, and noise level. The proposed protection scheme efficiently detected, classified, and located the faulty events such as single-phase-to-ground fault (SPGF), two-phase fault (TPF), two-phase-to-ground fault (TPGF), three-line fault (TLF), and three-line-to-ground fault (TLGF). Transmission line fault location accuracy of 99.031% is achieved. The algorithm performs well even with a high noise level of
10
dB
SNR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.