Technology gaps in measuring wellbore parameters and providing the results at surface without using wireline (Production Logging) or slick-line, without using mud-pulse, electromagnetic or acoustic telemetry, or pre-installed or permanently installed downhole sensors remain an area to be bridged. Our ability to engineer light-weight, high-strength, highly-reactive (dissolvable) or corrosion-resistant, nanostructured-alloys and intelligent micro-electromechanical system (MEMS) devices have enabled design of buoyant sensors having thin (millimetric) wall, capable of withstanding 20,000 psi or more differential pressure. These sensors measure and record a complete set of the client’s required wellbore parameters (e.g., Pressure, Temperature, Depth, Casing collars, Flow-rate across perforations or in wellbore, Water cut, Dissolved O2, etc.). These devices are deployed, either nested in an outer shell of salinity independent water reactive alloy to abet pump down to depth or weighed down by a sinker of dissolvable alloy. These devices are free-flowing within a wellbore so that they can be placed downhole to required depth for a specific time, after which the outer shell dissolves or the sinker weight falls, releasing the inner gauge. The now buoyant device flows back to surface with produced fluids where they make their presence known by sonic or inductive signaling. Our company was founded to take advantage of these disruptive innovations in materials science and sensors and synthesis of these technologies to provide superior performance products for both deep-water domains and the multistage stimulation (MSS) market. In this article we address two of our key inventions. First, the development of miniature, self-contained, battery powered, free-flowing sensor devices for reservoir monitoring, passively retrievable through carrier buoyancy. A subset of this game changing approach, to economize operations is, "Measuring in- situ pressure, temperature, and subsequent production during MSS". Second, we present a mechanism to assess susceptibility of oilfield alloys, especially in live reservoir fluids at the production zone. This encompasses a retrievable sensor device to assess environmental effects on materials at target zone in wellbore during production or shut in, can be deployed anywhere from production zone to bubble point, to surface separator. It facilitates testing not in a simulated autoclave environment at surface, but downhole, at the zone of interest.
Technology gaps to harness source rock or shale, unconventional reservoirs in the Middle East and North Africa pose unique challenges. Carbonate reservoirs, supplying Ca2+ ions resulting in passivation of traditional magnesium-based water reactive alloy alloys and abundance of H2S/CO2 rich production fluids at high pressure high temperature downhole conditions cause unpredictable degradation of plugs. This leads to the technology gap, an economical prediction mechanism to assess the degree of dissolution for deployed tools, which has prevented rapid uptake of water reactive alloys in these markets. Here we present, materials and methods to design and manufacture water reactive (fully dissolvable) alloy plugs for multi-stage stimulation (MSS) AKA hydraulic fracturing for the Middle East and North Africa (MENA). The backbone of our water reactive plug is a self-articulating amorphous and bulk nanocrystalline alloy and/or partially or fully vitrified dissolvable material with artificial intelligence (AI), sensing in its DNA, with an ability to learn from the environment it is deployed in. Additionally, these materials will deploy articles that relay information from downhole to surface without conventional telemetry. Other embodiments of the technology building blocks encompass novel, multi-layered smart water reactive nano-materials, further enhancing tailored and timed dissolution.
Technology developed to harness extended reach deviated (ERD) wells for deep-water and longer laterals for unconventionals demand the use of reliable "Dissolvable Alloys". Furthermore, an economic prediction mechanism to assess the degree of dissolution of deployed dissolvable hardware is highly coveted. This is one of the bottlenecks preventing the increased adoption of dissolvables in both deep-water and multistage stimulation (MSS). DAMORPHE was founded to take advantage of recent Mechanical-Materials-Electrical (MME) innovations for development and commercialization of "Game-Changing" technologies through the selective use of amorphous and nanocrystalline dissolvable alloys with Artificial Intelligence (AI). Here we discuss a couple of applications where dissolvable materials bring enhanced functionality over traditional methods and present a case for how replacing these with intelligent materials can bring further benefits to the end users.
It is well understood that strength to weight ratio is an important driver facilitating extended reach deviated wells, as such engineering corrosion resistant ultra-high-strength light-alloys (LAs) are an absolute necessity. High strength steels and nickel alloys, having yield strengths between 80 and 120 ksi, commonly used in oil & gas completions and production, have 3 to 5X higher specific gravity compared to LAs. In comparison, commercial coarse-grained polycrystalline light-alloys (CGP-LAs) have a much lower strength, typically less than 45 ksi yield strength and are not corrosion resistant. However, if strength of LAs can be increased to match that of steels and nickel alloys while simultaneously augmenting their corrosion and environmental assisted cracking (EAC) resistance through severe plastic deformation (SPD) routes, manifesting an ultra-fine-grained (UFG) microstructure, they will far surpass strength to weight ratios of steels and nickel alloys. As such the quest for a perfect alloy with the right combination of strength, ductility, corrosion, and abrasion resistance is ever ongoing. The advent of nanotechnology and advancements in engineering nanostructures with high strengths and reasonable ductility has motivated researchers globally [1-7]. We have bridged a few of these technology gaps by addressing challenges relating to the compromised ductility of these novel high-strength nanomaterials, however there is limited data on their EAC susceptibility. EAC encompasses stress corrosion cracking (SCC) related events or catastrophic failures due to the loss of ductility of a metal exposed to acid gases, such as hydrogen sulphide (H2S) and/or through absorption of hydrogen. To determine if grain refinement in a LA, and resultant Hall Petch strengthening, where strength of the UFG-LA surpasses that of commercial coarse-grained oil-grade steels, is instrumental in enhancing its EAC resistance, focused experiments were conducted. An aluminum-magnesium CGP-LA commonly used in offshore and marine applications was selected and subjected to SPD resulting in an UFG microstructure. Both CGP-LA and UFG-LA specimens were exposed to environmental conditions to compare their corrosion and EAC and resistance. It was observed from polarization measurements and immersion tests that UGF-LA had better corrosion resistance than CGP-LA. Uniaxial tensile tests in a neutral halide environment for various holding times confirmed that strength and ductility was maintained for UFG-LA specimens while catastrophic failures of CGP-LA specimens were observed. It was also evident from orientation images that grain boundaries in UFG-LA were predominantly high-angle in contrast to CGP-LA. The improved corrosion and EAC resistance of UFG-LA was due to a large number of purer grain boundaries with nanocrystalline impurities distributed infrequently along them. These results are very topical as they highlight the possibility of harnessing the enhanced strength to weight ratios of these unique alloys for designing buoyant thin walled flowable shells for deployment in high pressure high temperature (HPHT) oilfield environments, from vehicles being designed for interstellar gas giants to aggressive sour oilfield reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.