Content filtering technologies are often used for Internet censorship, but even as these technologies have become cheaper and easier to deploy, the censorship measurement community lacks a systematic approach to monitor their proliferation. Past research has focused on a handful of specific filtering technologies, each of which required cumbersome manual detective work to identify. Researchers and policymakers require a more comprehensive picture of the state and evolution of censorship based on content filtering in order to establish effective policies that protect Internet freedom. In this work, we present FilterMap, a novel framework that can scalably monitor content filtering technologies based on their blockpages. FilterMap first compiles in-network and new remote censorship measurement techniques to gather blockpages from filter deployments. We then show how the observed blockpages can be clustered, generating signatures for longitudinal tracking. FilterMap outputs a map of regions of address space in which the same blockpages appear (corresponding to filter deployments), and each unique blockpage is manually verified to avoid false positives. By collecting and analyzing more than 379 million measurements from 45,000 vantage points against more than 18,000 sensitive test domains, we are able to identify filter deployments associated with 90 vendors and actors and observe filtering in 103 countries. We detect the use of commercial filtering technologies for censorship in 36 out of 48 countries labeled as 'Not Free' or 'Partly Free' by the Freedom House "Freedom on the Net" report [26]. The unrestricted transfer of content filtering technologies have led to high availability, low cost, and highly effective filtering techniques becoming easier to deploy and harder to circumvent. Identifying these filtering deployments highlights policy and corporate social responsibility issues, and adds accountability to filter manufacturers. Our continued publication of FilterMap data will help the international community track the scope, scale and evolution of content-based censorship.
Until now, censorship research has largely focused on highly centralized networks that rely on government-run technical choke-points, such as the Great Firewall of China. Although it was previously thought to be prohibitively difficult, large-scale censorship in decentralized networks are on the rise. Our in-depth investigation of the mechanisms underlying decentralized information control in Russia shows that such large-scale censorship can be achieved in decentralized networks through inexpensive commodity equipment. This new form of information control presents a host of problems for censorship measurement, including difficulty identifying censored content, requiring measurements from diverse perspectives, and variegated censorship mechanisms that require significant effort to identify in a robust manner. By working with activists on the ground in Russia, we obtained five leaked blocklists signed by Roskomnadzor, the Russian government's federal service for mass communications, along with seven years of historical blocklist data. This authoritative list contains domains, IPs, and subnets that ISPs have been required to block since November 1st, 2012. We used the blocklist from April 24 2019, that contains 132,798 domains, 324,695 IPs, and 39 subnets, to collect active measurement data from residential, data center and infrastructural vantage points. Our vantage points span 408 unique ASes that control ≈ 65% of Russian IP address space. Our findings suggest that data centers block differently from the residential ISPs both in quantity and in method of blocking, resulting in different experiences of the Internet for residential network perspectives and data center perspectives. As expected, residential vantage points experience high levels of censorship. While we observe a range of blocking techniques, such as TCP/IP blocking, DNS manipulation, or keyword based filtering, we find that residential ISPs are more likely to inject blockpages with explicit notices to users when censorship is enforced. Russia's censorship architecture is a blueprint, and perhaps a forewarning of what and how national censorship policies could be implemented in many other countries that have similarly diverse ISP ecosystems to Russia's. Understanding decentralized control will be key to continuing to preserve Internet freedom for years to come.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.