Analyses of frequency profiles of markers on disease or drug-response related genes in diverse populations are important for the dissection of common diseases. We report the results of analyses of data on 405 SNPs from 75 such genes and a 5.2 Mb chromosome, 22 genomic region in 1871 individuals from diverse 55 endogamous Indian populations. These include 32 large (>10 million individuals) and 23 isolated populations, representing a large fraction of the people of India. We observe high levels of genetic divergence between groups of populations that cluster largely on the basis of ethnicity and language. Indian populations not only overlap with the diversity of HapMap populations, but also contain population groups that are genetically distinct. These data and results are useful for addressing stratification and study design issues in complex traits especially for heterogeneous populations.
BackgroundAnti-malarial drug resistance in Plasmodium falciparum in India has historically travelled from northeast India along the Myanmar border. The treatment policy for P. falciparum in the region was, therefore, changed from chloroquine to artesunate (AS) plus sulphadoxine-pyrimethamine (SP) in selected areas in 2005 and in 2008 it became the first-line treatment. Recognizing that resistance to the partner drug can limit the useful life of this combination therapy, routine in vivo and molecular monitoring of anti-malarial drug efficacy through sentinel sites was initiated in 2009.MethodsBetween May and October 2012, 190 subjects with acute uncomplicated falciparum malaria were enrolled in therapeutic efficacy studies in the states of Arunachal Pradesh, Tripura, and Mizoram. Clinical and parasitological assessments were conducted over 42 days of follow-up. Multivariate analysis was used to determine risk factors associated with treatment failure. Genotyping was done to distinguish re-infection from recrudescence as well as to determine the prevalence of molecular markers of antifolate resistance among isolates.ResultsA total of 169 patients completed 42 days of follow-up at three sites. The crude and PCR-corrected Kaplan-Meier survival estimates of AS + SP were 60.8% (95% CI: 48.0-71.4) and 76.6% (95% CI: 64.1-85.2) in Gomati, Tripura; 74.6% (95% CI: 62.0-83.6) and 81.7% (95% CI: 69.4-89.5) in Lunglei, Mizoram; and, 59.5% (95% CI: 42.0-73.2) and 82.3% (95% CI: 64.6-91.6) in Changlang, Arunachal Pradesh. Most patients with P. falciparum cleared parasitaemia within 24 hours of treatment, but eight, including three patients who failed treatment, remained parasitaemic on day 3. Risk factors associated with treatment failure included age < five years, fever at the time of enrolment and AS under dosing. No adverse events were reported. Presence of dhfr plus dhps quintuple mutation was observed predominantly in treatment failure samples.ConclusionAS + SP treatment failure was widespread in northeast India and exceeded the threshold for changing drug policy. Based on these results, in January 2013 the expert committee of the National Vector Borne Disease Control Programme formulated the first subnational drug policy for India and selected artemether plus lumefantrine as the new first-line treatment in the northeast. Continued monitoring of anti-malarial drug efficacy is essential for effective malaria control.
Malaria treatment in Southeast Asia is threatened with the emergence of artemisinin-resistant Plasmodium falciparum. Genome association studies have strongly linked a locus on P. falciparum chromosome 13 to artemisinin resistance, and recently, mutations in the kelch13 propeller region (Pfk-13) were strongly linked to resistance. To date, this information has not been shown in Indian samples. Pfk-13 mutations were assessed in samples from efficacy studies of artemisinin combination treatments in India. Samples were PCR amplified and sequenced from codon 427 to 727. Out of 384 samples, nonsynonymous mutations in the propeller region were found in four patients from the northeastern states, but their presence did not correlate with ACT treatment failures. This is the first report of Pfk-13 point mutations from India. Further phenotyping and genotyping studies are required to assess the status of artemisinin resistance in this region.
BackgroundRecent reports of emergence and spread of artemisinin resistance in the Southeast Asia region, including Myanmar, pose a greater threat to malaria control and elimination in India. Whole genome sequencing studies have associated mutations in the K13 propeller gene (k13), PF3D7_1343700 with artemisinin resistance both in vitro and in vivo. The aim of the present study was to find the k13 gene polymorphisms in Plasmodium falciparum parasites from the three sites in the Northeast region of India, bordering Bangladesh and Myanmar.MethodsA total of 254 samples collected during 2014–2015 from Tripura, Mizoram and Arunachal Pradesh states in the Northeast region of India were used to obtain the full-length k13 gene sequences.ResultsThree non-synonymous (NS) mutations: two in the propeller region, namely at codon 446 and 578, were observed besides one at codon 189 in the non-propeller region. The treatment outcome was not affected by these mutations at any of the sites. In addition, microsatellite variation in the N-terminus of the k13 protein was observed at all the study sites.ConclusionThis is the first study to document the presence of F446I NS mutation in the k13 propeller region from Changlang district, Arunachal Pradesh, a site adjoining the Indo-Myanmar border region, where this mutation is highly prevalent. In addition, NS mutation A578S has been observed only at Lunglei district, Mizoram, a site bordering Bangladesh and K189T mutation with relatively higher frequency in Mizoram and Tripura states. The presence of F446I mutation in a region close to the Myanmar border is notable. Considering the spread of anti-malarial drug resistance from Southeast Asia to the Northeast region of India in the past, there is an urgent need to undertake systematic mapping studies to ascertain the role and extent of this mutation in artemisinin resistance in this region of country.
Puerariatuberosa (Roxb. ex Willd.) DC. (Fabaceae), also known as Indian Kudzu (vidari kand), is a perennial herb distributed throughout India and other Asian countries. Traditionally, tuber and leaves of this plant have extensively been reported for nutritional and medicinal properties in Ayurveda as well as in Chinese traditional practices. The objective of the present review is to compile and update the published data on traditional uses, pharmacological potential, and phytochemistry of compounds isolated from the plant Pueraria tuberosa. P. tuberosa extracts and its purified compounds possess multiple activities such as anticancer, anticonvulsant, antidiabetic, antifertility, anti-inflammatory, antioxidant, anti-stress, antiulcerogenic, cardioprotective, hypolipidemic, hepatoprotective, immunomodulatory, nephroprotective, nootropic, neuroprotective, and wound healing. Tuber and leaf extracts of P. tuberosa contain several bioactive constituents such as puerarin, daidzein, genistein, quercetin, irisolidone, biochanin A, biochanin B, isoorientin, and mangiferin, which possess an extensive range of pharmacological activities. The extensive range of pharmacological properties of P. tuberosa provides opportunities for further investigation and presents a new approach for the treatment of ailments. Many phytochemicals have been identified and characterized from P. tuberosa; however, some of them are still unexplored, and there is no supporting data for their activities and exact mechanisms of action. Therefore, further investigations are warranted to unravel the mechanisms of action of individual constituents of this plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.