The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
SignificanceIdentifying and explaining regional differences in tropical forest dynamics, structure, diversity, and composition are critical for anticipating region-specific responses to global environmental change. Floristic classifications are of fundamental importance for these efforts. Here we provide a global tropical forest classification that is explicitly based on community evolutionary similarity, resulting in identification of five major tropical forest regions and their relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. African and American forests are grouped, reflecting their former western Gondwanan connection, while Indo-Pacific forests range from eastern Africa and Madagascar to Australia and the Pacific. The connection between northern-hemisphere Asian and American forests is confirmed, while Dry forests are identified as a single tropical biome.
Abstract.One of the major challenges in the current scenario for ecological conservation is to quantify the forest landscape in its spatio-temporal domain and understand further implications of those. While the detailed study of the forest ecosystems may provide insights into biodiversity, carrying capacity and productive nature, most of the studies are restricted to single time/event inventory and focused on assessment of tree diversity patterns. Through the adoption of geospatial technologies like remote sensing and Geographical Information System (GIS), though forest monitoring has been possible, the linkages to the biodiversity distribution and its patterns are still at an empirical level, thus supporting broad measures of protection and preservation without accounting for the local/regional variability. Towards this the paper discusses the lacuna in the current landscape research approaches in Indian scenario. Presents a framework to analyze the landscape structure at the, micro, meso and macro levels. Emphasize the need for the collection of spatio-temporal field data to analyze the change in biodiversity and their linked entities. The paper suggests the need for development of long term ecological area networks to understand the ecological processes, making the data open and improve collaborations among the organizations working in the similar domain to enhance the impact of the research works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.