BackgroundTranexamic acid (TXA) is an antifibrinolytic agent applied in orthopedic surgery and has been proven to reduce post-surgery infection rates. We previously showed that TXA also had an additional direct antimicrobial effect against planktonic bacteria. Therefore, we aimed to evaluate whether it has a synergistic effect if in combination with antibiotics.Materials and MethodsThree ATCC and seven clinical strains of staphylococci were tested against serial dilutions of vancomycin and gentamicin alone and in combination with TXA at 10 and 50 mg/ml. The standardized microtiter plate method was used. Minimal inhibitory concentrations (MICs) were calculated by standard visualization of well turbidity (the lowest concentration at which complete absence of well bacterial growth was observed by the researcher) and using the automated method (the lowest concentration at which ≥80% reduction in well bacterial growth was measured using a spectrophotometer).ResultsTranexamic acid-10 mg/ml reduced the MIC of vancomycin and gentamicin with both the standard method (V: 1-fold dilution, G: 4-fold dilutions) and the automated turbidity method (vancomycin: 8-fold dilutions, gentamicin: 8-fold dilutions). TXA-50 mg/ml reduced the MIC of gentamicin with both the standard turbidity method (6-fold dilutions) and the automated turbidity method (1-fold dilutions). In contrast, for vancomycin, the MIC remained the same using the standard method, and only a 1-fold dilution was reduced using the automated method.ConclusionOurs was a proof-of-concept study in which we suggest that TXA may have a synergistic effect when combined with both vancomycin and gentamicin, especially at 10 mg/ml, which is the concentration generally used in clinical practice.
The possible use of TXA as an antibiotic agent in addition to its antifibrinolytic effect may play an important role in the prevention of prosthetic joint infection.
BackgroundIn the practice of breast augmentation and reconstruction, implant irrigation with various solutions has been widely used to prevent infection and capsular contracture, but to date, there is no consensus on the optimal protocol to use. Recently, application of povidone iodine (PI) for 30 min has shown in vitro to be the most effective irrigating formula in reducing contamination in smooth breast implants. However, as 30 min is not feasible intraoperatively, it is necessary to determine whether shorter times could be equally effective as well as to test it in both smooth and textured implants.MethodsWe tested the efficacy of 10% PI at 1′, 3′, and 5′ against biofilms of 8 strains (2 ATCC and 6 clinical) of Staphylococcus spp. on silicone disks obtained from Mentor® and Polytech® implants of different textures. We analyzed the percentage reduction of cfu counts, cell viability and bacterial density between treatment (PI) and control (sterile saline, SS) groups for each time of application. We consider clinical significance when > 25% reduction was observed in cell viability or bacterial density.ResultsAll textured implants treated with PI at any of the 3 exposure times reduced 100% bacterial load by culture. However, none of the implants reached enough clinical significance in percentage reduction of living cells. Regarding bacterial density, only 25–50 μm Polytxt® Polytech® implants showed significant reduction at the three PI exposure times.ConclusionPI is able to inhibit bacterial growth applied on the surface of breast implants regardless of the exposure time. However, no significant reduction on living cells or bacterial density was observed. This lack of correlation may be caused by differences in texture that directly affect PI absorption.
Introduction:We previously demonstrated the efficacy of a frozen dalbavancin-heparin (DH) lock solution against biofilms of staphylococci. However, as enterococci also commonly cause catheter-related bloodstream infections (C-RBSI), we assessed the bioactivity of frozen dalbavancin (D) and DH against enterococci. Methods: Over 6 months, we compared the bioactivity of a solution of DH (1 mg/ml) with that of D in terms of cfu counts and metabolic activity against biofilms of Enterococcus faecalis and Enterococcus faecium (four strains each). For each solution, we individually compared results obtained at each time point (months 3 and 6) with baseline (month 0). We also compared the median DH value of each variable at baseline and at months 3 and 6 of freezing with the values obtained for D alone. We used both statistical and clinical criteria when results were within 25% of the reference value. Results: At the end of the experiment (month 6), neither a statistically nor a clinically significant reduction in the bioactivity of D solution was observed in terms of cfu count and metabolic activity against enterococcal biofilms. Regarding the DH solution, we found both statistical and clinical significance in the median percentage reduction in metabolic activity between months 0 and 6 in E. faecalis strains (51.8% vs. 77.8%, P = 0.007). Moreover, after freezing, the DH solution lost significant bioactivity compared with the D solution, especially in E. faecalis. Conclusion: A dalbavancin lock solution can be frozen for up to 6 months with no negative effect on its bioactivity against enterococcal biofilms. However, when combined with heparin, its
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.