Given a textual description of an image, phrase grounding localizes objects in the image referred by query phrases in the description. State-of-the-art methods address the problem by ranking a set of proposals based on the relevance to each query, which are limited by the performance of independent proposal generation systems and ignore useful cues from context in the description. In this paper, we adopt a spatial regression method to break the performance limit, and introduce reinforcement learning techniques to further leverage semantic context information. We propose a novel Query-guided Regression network with Context policy (QRC Net) which jointly learns a Proposal Generation Network (PGN), a Query-guided Regression Network (QRN) and a Context Policy Network (CPN). Experiments show QRC Net provides a significant improvement in accuracy on two popular datasets: Flickr30K Entities and Referit Game, with 14.25% and 17.14% increase over the state-of-the-arts respectively. * Equal contribution. Names are sorted alphabetically.A man is playing a guitar for a little girl. Query: A man Context: a guitar,
This paper discusses the challenges of optical character recognition (OCR) on natural scenes, which is harder than OCR on documents due to the wild content and various image backgrounds. We propose to uniformly use word error rates (WER) as a new measurement for evaluating scene-text OCR, both end-to-end (e2e) performance and individual system component performances. Particularly for the e2e metric, we name it DISGO WER as it considers Deletion, Insertion, Substitution, and Grouping/Ordering errors. Finally we propose to utilize the concept of super blocks to automatically compute BLEU scores for e2e OCR machine translation. The small SCUT public test set is used to demonstrate WER performance by a modularized OCR system.
We present a novel approach for disentangling the content of a text image from all aspects of its appearance. The appearance representation we derive can then be applied to new content, for one-shot transfer of the source style to new content. We learn this disentanglement in a self-supervised manner. Our method processes entire word boxes, without requiring segmentation of text from background, per-character processing, or making assumptions on string lengths. We show results in different text domains which were previously handled by specialized methods, e.g., scene text, handwritten text. To these ends, we make a number of technical contributions: (1) We disentangle the style and content of a textual image into a non-parametric, fixed-dimensional vector. (2) We propose a novel approach inspired by StyleGAN but conditioned over the example style at different resolution and content. (3) We present novel self-supervised training criteria which preserve both source style and target content using a pre-trained font classifier and text recognizer. Finally, (4) we also introduce Imgur5K, a new challenging dataset for handwritten word images. We offer numerous qualitative photo-realistic results of our method. We further show that our method surpasses previous work in quantitative tests on scene text and handwriting datasets, as well as in a user study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.