The paralleling of power converters connected to the grid for power-sharing is a widely used technique. In this context, the design framework for a low-cost, lightweight, compact and high-performance optimum configuration is an open problem. This paper proposes an innovative Multi-Objective Hierarchical Optimization Design Framework (MO-HO-DF) for an AC grid interface with N interleaved H-bridges, each with M parallel "to-be-determined" switches, connected through coupling inductances (L f ). A total of eight figures of merit (FOMs) were identified for the design framework optimization. A rigorous model of the power electronic system is presented. Next, a highly computationally efficient algorithm for the estimation of the required frequency modulation ratio (m f ) to meet current harmonic performance requirements for any given configuration is proposed. Then, the concept and implementation of the algorithm are presented for the MO-HO-DF. The effectiveness of the design optimization framework is demonstrated by comparing it to a base case solution. Finally, the design calculations are validated via PLECS simulation with manufacturer-provided 3D power semiconductor models that include thermal modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.